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We describe a generalization of the PAC learning model that is based on statisti- 
cal decision theory. In this model the learner receives randomly drawn examples, 
each example consisting of an instance x E X and an outcome J E Y, and tries to find 
a decision rule h: X + A, where h E X, that specifies the appropriate action a E A to 
take for each instance x in order to minimize the expectation of a loss I( y, a). Here 
X, Y, and A are arbitrary sets. I is a real-valued function, and examples are 
generated according to an arbitrary joint distribution on Xx Y. Special cases 
include the problem of learning a function from X into Y, the problem of learning 
the conditional probability distribution on Y given X (regression), and the problem 
of learning a distribution on X (density estimation). We give theorems on the 
uniform convergence of empirical loss estimates to true expected loss rates for cer- 
tain decision rule spaces 2, and show how this implies learnability with bounded 
sample size, disregarding computational complexity. As an application, we give 
distribution-independent upper bounds on the sample size needed for learning with 
feedforward neural networks, Our theorems use a generalized notion of VC 
dimension that applies to classes of real-valued functions, adapted from Vapnik and 
Pollard’s work, and a notion of capacity and metric dimension for classes of func- 
tions that map into a bounded metric space. ‘(‘1 1992 Academic Press, Inc. 

1. INTRODUCTION 

The introduction of the Probably Approximately Correct (PAC) model 
(Valiant, 1984; Angluin, 1988) of learning from examples has done an 
admirable job of drawing together practitioners of machine learning with 
theoretically oriented computer scientists in the pursuit of a solid and use- 
ful mathematical foundation for applied machine learning work. These 
practitioners include both those in mainstream artificial intelligence and 
those in neural net research. However, in attempts to address the issues 
that are relevant to this applied work in machine learning, a number of 
shortcomings of the model have cropped up repeatedly. Among these are 
the following: 

1. The model is defined only for (0, 1 }-valued functions. Practi- 
tioners would like to learn functions on an instance space X that take 
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values in an arbitrary set Y; e.g., multi-valued discrete functions, 
real-valued functions, and vector-valued functions. 

2. Some practitioners are wary of the assumption that the examples 
are generated from an underlying “target function,” and are not satisfied 
with the noise models that have been proposed to weaken this assumption 
(e.g., Angluin and Laird, 1988; Sloan, 1988; Shackelford and Volper, 1988). 
They would like to see more general regression models investigated in 
which the y component in a training example (x, y) E Xx Y is randomly 
specified according to a conditional distribution on Y, given x. Here the 
general goal is to approximate this conditional distribution for each 
instance x E X. In the computational learning theory literature, a model of 
this type is investigated in Kearns and Schapire (1990) with Y = (0, 1 ), 
and for a more general case in Yamanishi (1990). 

3. Many learning problems are unsupervised; i.e., the learner has 
access only to randomly drawn, unlabeled examples from an instance space 
X. Here learning can often be viewed as some form of approximation of the 
distribution that is generating these examples. This is usually called density 
estimation when the instance space X is continuous and no specific 
parametric form for the underlying distribution on X is assumed. It is often 
called parameter estimation when specific parametric probability models are 
used. One example of this in the computational learning theory literature 
is the recent investigation of Abe and Warmuth (1990) into the complexity 
of learning the parameters in a hidden Markov model. 

Our purpose here is twofold. First, we propose an extension of the PAC 
model, based on the work of Vapnik and Chervonenkis (Vapnik, 1989) 
and Pollard (1984, 1990), that addresses these and other issues. Second, we 
use this extension to obtain distribution-independent upper bounds on the 
size of the training set needed for learning with various kinds of feed- 
forward neural networks (Rumelhart and McClelland, 1986; Poggio and 
Girosi, 1989), a popular learning method that is not covered by the basic 
PAC model. 

1.1. Overview of the Proposed Framework 

To extend the PAC model, we propose a more general framework based 
on statistical decision theory (see, e.g., Ferguson (1967), Kiefer (1987), or 
Berger (1985)). In this general framework we assume the learner receives 
randomly drawn training examples, each example consisting of an instance 
XE X and an outcome YE Y, where X and Y are arbitrary sets called 
instance and outcome spaces, respectively. These examples are generated 
according to a joint distribution on Xx Y, unknown to the learner. This 
distribution comes from a (known) class 9 of joint distributions on Xx Y, 
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representing possible “states of nature.” After training, the learner receives 
further random examples drawn from this same joint distribution. For each 
example (x, y), the learner will be shown only the instance X. Then he will 
be asked to choose an action a from a set of possible actions A, called the 
decision space. Following this, the outcome y will be revealed to the learner. 
In the case that we examine here, the outcome y depends only on the 
instance x and not on the action a chosen by the learner. For each action 
a and outcome y, the learner will suffer a loss, which is measured by a fixed 
real-valued loss function I on Y x A. We assume that the loss function is 
known to the learner. The learner tries to choose his actions so as to 
minimize his loss. 

Here we look at the case in which, based on the training examples, the 
learner develops a deterministic strategy that specifies what he believes is 
the appropriate action a for each instance x in X. He then uses this strategy 
on all future examples. Thus we look at “batch” learning rather than 
“incremental” or “on-line” learning (Littlestone, 1988). The learner’s 
strategy, which is a function from the instance space X into the decision 
space A, is called a decision rule. We assume that the decision rule is chosen 
from a fixed decision rule space X of functions from X into A. For 
example, instances in X may be encoded as inputs to a neural network, and 
outputs of the network may be interpreted as actions in A. In this case the 
network represents a decision rule, and the decision rule space 2 may be 
all functions represented by networks obtained by varying the parameters 
of a fixed underlying network. The goal of learning is to find a decision 
rule in X that minimizes the expected loss, when examples are drawn at 
random from the unknown joint distribution on Xx Y. 

This learning framework can be applied in a variety of situations. We 
now give several illustrations. For further discussion, we refer the reader to 
the excellent surveys of White (1990b), Barron (1989), Devroye (1988), 
and Vapnik (1989), to which we are greatly indebted. We also recommend 
the text by Kiefer (1987), for a general introduction to statistical inference 
and decision theory. 

1.1.1. Betting E.xample 

For our first example, consider the problem of learning to maximize 
profit (or minimize loss!) at the horse races. Here an instance x in X is a 
race, an action a in A consists of placing or not placing a certain bet, and 
an outcome y in Y is determined by the winner and the second and third 
place finishers. The loss I( y, a) is the amount of money lost when bet a 
is placed and the outcome of the race is y. A negative loss is interpreted 
as a gain. The joint distribution on Xx Y represents the probability of 
various races and outcomes. This joint distribution is unknown to the 
learner; he only has random examples (x, , y, ), . . . . (x,, y,), each consisting 
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of a race/outcome pair generated from this distribution. From these 
examples, the learner develops a deterministic betting strategy (decision 
rule). The best decision rule h is one that specifies a bet a for each race x 
that minimizes the expectation of the loss I( y, a), when y is chosen 
randomly from the unknown conditional distribution on Y given X, which 
is determined by the underlying joint distribution on Xx Y. This (not 
necessarily unique) best decision rule minimizes the expected loss on a 
random example (x, y). It is known as the Buyes optimal decision rule. The 
learner tries to approximate the Bayes optimal decision rule as best he can 
using decision rules from a given decision rule space 2 (e.g., “simple” or 
“easy to compute” decision rules, or perhaps decision rules that can be 
represented by a particular kind of neural network). 

1.1.2. Classification 

As a second example, consider the problem of medical diagnosis. Here 
an instance x is a vector of measurements from medical tests conducted on 
the patient, an action a is a diagnosis of the patient’s disease state, and an 
outcome y may be defined as the actual disease state of the patient. Here 
A = Y; i.e., the possible diagnoses are the same as the possible disease 
states. To specify the loss function Z, we may stipulate that there is zero loss 
for the correct diagnosis a = y, but for each pair (y, a) with diagnosis a 
differing from disease state y there is some positive real loss I( y, a), 
depending on the severity of the consequences of that particular mis- 
diagnosis. Here a decision rule is a diagnostic method, and Bayes optimal 
decision rule is the one that minimizes the expected loss from misdiagnosis 
when examples (x, y) of test results and associated disease states occur 
randomly according to some unknown “natural” joint distribution. 

This medical diagnosis situation is a typical example of a classification 
learning problem in the field of pattern recognition (see, e.g., Duda and 
Hart (1973)). The problem of learning a Boolean function from noise-free 
examples, as investigated in the PAC model, is a special case of classifica- 
tion learning. Here the outcome space Y is (0, 1 } and only the instance x 
in an example (x, y) is drawn at random. The outcome y is f(x) for some 
unknown Boolean targetfunctionf, rather than being determined stochasti- 
tally. As above, the decision space A is the same as the outcome space Y, 
and the action a can be interpreted as a prediction of the outcome y. 
Hence, a decision rule h maps from the instance space X into the outcome 
space Y, just as the target function does. In much of AI, and in PAC 
learning in particular, it is common to refer to h as a hypothesis in this case, 
and to A? as the hypothesis space. 

This same setup, where the outcome y is.a function of the instance x, 
can be applied to any function learning problem by letting X and Y be 
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arbitrary sets. In the general function learning problem, the loss function 
I( y, a) usually measures the distance between the prediction a and the 
actual value y in some metric. In the PAC model, f is the discrete metric: 
I( y, a) = 0 if a = y, else f( y, a) = 1. Thus the expected loss of the decision 
rule (or hypothesis) is just the probability that it predicts incorrectly, the 
usual PAC notion of the error of the hypothesis. In general, Y may be a 
set of strings, graphs, real vectors, etc., in which case other distance metrics 
or more general kinds of loss functions may be more appropriate. 

1.1.3. Regression 

The general problem of regression has a different character from that of 
classification learning, but can also be addressed in the decision theoretic 
learning framework. To illustrate this, as a third example consider a variant 
of the medical diagnosis situation in which the doctor provides an estimate 
of the probability that the patient has each of several diseases, rather than 
predicting that he has one specific disease or asserting that he is healthy. 
(Here we assume that the actual disease state includes at most one disease.) 
For example, the doctor may say “Given these test results X, I would say 
you have disease 1 with probability 55%, disease 2 with probability 5%, 
and no disease at all with probability 40%.” Here the doctor is actually 
trying to estimate the conditional distribution on disease states Y given the 
test results x. Her action a entails providing a vector of parameters that 
determine that estimated distribution, e.g., (0.55, 0.05, 0.4). The decision 
space A is the set of all such parameter vectors. 

Now let Y be an arbitrary discrete outcome space. Keeping the instance 
x fixed, for each parameter vector a in A and outcome y in Y let f( y; a) 
denote the probability of outcome y with respect to the distribution on Y 
defined by the parameter vector a. Thus when we take action a on instance 
x, we are asserting that, given the instance x, we estimate the conditional 
probability of outcome y to be P( y; a) for each outcome y in Y. Let P(y) 
denote the actual conditional probability of outcome y, given the instance 
x, with respect to the unknown joint distribution on Xx Y. (The distribu- 
tions P and P can be replaced by densities when Y is continuous.) Let us 
define’ the loss function 1 by setting 1( y, a) = -log B( y; a). This is called 
the (negative) log likelihood loss function. If we define loss in this way, then 
the expected loss resulting from action a has a natural information 
theoretic interpretation:* it is the Kullbuck-Leibler divergence (Kullback, 

’ We assume P( y; a) > 0 for all y in Y. 

*The KullbackPLeibler divergence from P to p, denoted I(PI/ P), is defined as 
xF, y P(y) log(P( y)/&v; a)) for countable Y. The entropy of P, denoted H(P), is 
-XV, y P(y) log P( :). Thus I(P /I P) + H(P) = -IV, y P(y) log P( y; a), which is the expecta- 
tion of the (negative) log likelihood loss. Analogous results hold for densities when the 
relevant quantities are finite (Kullback, 1959). 
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1959) (or information gain (Renyi, 1970)) from the actual conditional 
probability distribution P to the estimated conditional distribution p, plus 
the entropy of P. 

For a given x, the entropy of the true conditional distribution P is a 
constant, independent of the action a. Thus choosing the action a for each 
instance x that minimizes the expected log likelihood loss is equivalent to 
choosing the action a that gives the closest estimate p to the true condi- 
tional distribution P over possible outcomes in Y as measured by the 
Kullback-Leibler divergence, given that instance X. It is well known that 
the Kullback-Leibler divergence is minimized when P = P. This is the 
Bayes optimal decision rule in regression. 

In the regression version of our medical diagnosis situation, the defini- 
tion of the log likelihood loss function depends on the interpretation of the 
components of the parameter vector a. If there are k possible diseases and 
the patient can have at most one of these, then we might have k + 1 
possible mutually exclusive disease states y,, . . . . yk + , , where y, + , means 
healthy. Hence Y = { y,, . . . . y, + 1 }. Then we might specify that an action a 
takes the form 

a = (a I > “‘> a.4 + I 1, 

where ai = p( yi; a), the estimated probability of disease state y;. Here the 
components of the vector a must be positive and sum to one. In this case 
the log likelihood loss would be 1( y,, a) = -log ui = -log p( yi; a). 

Often the constraints on the components of a are a nuisance, so other 
interpretations of a are used; e.g., that ui = log p( yi; a) - log P( y, + i ; a) for 
each i, 1 <id k + 1. In this case the a,, . . . . uk are arbitrary real numbers 
and a k + i = 0, and hence can be ignored. Since P( y,; a) = e@Ej”t,’ eq, the 
log likelihood loss is 1( yi, a) = -ui + log c,“ri’ eq = -ui + log( 1 + xF=, e+). 
This is known as the logistic loss (McCullagh and Nelder, 1989; Barron, 
1989). 

A third interpretation would be to allow the possibility that the patient 
may have more than one disease, and assume, for the purposes of estima- 
tion, that diseases occur independently. Then the disease state y might be 
defined as a binary vector of length k, where the ith bit yi is 1 if and only 
if the ith disease is present. Hence Y= (0, l}“. Similarly, the vector u 
would be a vector of independent probabilities (a,, . . . . uk), where ui is the 
estimated probability of the patient having the ith disease. In this case 

P(y;a)= fi qyl-ui)('-"' 
i=l 
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and the log likelihood loss is 

‘(.y3a)=Pi (J’il”g~i+(l-~j)lOg(l-Ui)), 
i= I 

which we call the cross entropy loss. 
In the medical diagnosis example, the outcome space Y is discrete. 

However, in most uses of regression Y is real valued; i.e., the outcome y is 
the measurement of some real valued quantity, and the instance x 
represents the experimental conditions under which this quantity was 
measured. In this case regression is usually defined as estimating the condi- 
tional expectation of Y given the instance x. Thus A c 93, and the action 
UE A for a given instance zc consists of an estimate of the mean of the 
various outcomes y that would typically be observed for that instance x. It 
is easy to show that by using the quadratic loss function I( y, a) = (a - y)*, 
the expected loss is minimized when a is the true mean, and hence this ver- 
sion of regression also fits naturally3 into the decision theoretic framework. 
An alternate approach is to use the L, loss function 1( y, a) = Ia - yI, in 
which case the expected loss is minimized when a is the median of the 
conditional distribution of Y given the instance x. (See, e.g., White, 1990b; 
Haussler, 1990. ) 

1.1.4. Density and Parameter Estimation 

Finally, the problems of parameter estimation and density estimation 
can also be viewed as special cases of this decision theoretic framework. 
For parameter estimation, note that when the instance space X has only 
one element, the particular instance x can be ignored entirely. Thus the 
regression problem reduces to the problem of estimating the parameters of 
a single distribution on the outcome space Y from a sample of random out- 
comes y from Y, i.e., to the simpler problem of parameter estimation. Here 

3 In fact, the standard version of regression, defined as estimating the conditional mean of 
Y given instance x using the quadratic loss function, is actually a special case of the general 
version of regression detined above, where for continuous outcome spaces Y, the object is to 

estimate the parameters specifying the conditional density of Y given instance X, using the log 
likelihood loss function. To see this, assume that we represent the conditional density on Y 
with a Gaussian density i( y; p, u) = (27r~~))~~~e~‘~- F’426z, where p is the mean and a* the 

variance. Let the variance be fixed, independent of x, so that the estimate a( Y; p, CT) of the 
conditional density on Y given x is completely determined by the mean p. Thus the decision 
space A c R, and each action a in A is interpreted as specifying the mean of a Gaussian den- 
sity. Substituting p = a and evaluating -log @( y; p. a), the log likelihood loss is seen to be 
/( y, a) = (1/2u*)(a - J)’ + i log(2rru2). For tixed variance o 2, this is equivalent, for learning, to 

the quadratic loss (a - y)*, since additive and multiplicative constants in the definition of I 
only rescale it without changing the value of a that minimizes its expectation. 
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the decision rule is not a function but merely a single vector of parameters, 
and the decision rule space X is the same as the decision space A. 

For density estimation, we can consider the dual case in which the 
outcome space Y has only one element, and hence can be ignored. Thus 
examples are unlabeled instances x drawn randomly from some density 
p(x) on X. Let the decision set A be the positive real numbers and let each 
decision rule h in 2 be a density on X. Then, as above, information 
theoretic considerations suggest the loss function I( y, a) = l(a) = -log a. 
Again, as above, the expected loss of h is minimized when h is the true 
density p. Further, if p is not a member of 2, then the best decision rule 
in 2, in terms of minimizing the expected loss, is the one with the smallest 
Kullback-Leibler divergence from the true density p (Kullback, 1959). 

When the instance space X is discrete, we are not estimating a density on 
X but rather a probability distribution. The same ideas as above carry 
over, except that we let the decision space A = (0, 1) and each decision rule 
h in 2 represents a probability distribution on X. Here we can also use the 
same loss function, and it has the same properties. 

These examples illustrate the diversity of the learning problems that can 
be cast in the proposed decision theoretic framework, even under the 
restrictive assumptions we make here, i.e., that the outcome y does not 
depend on the action a, and that the learner always observes both the 
outcome and the loss. By weakening these assumptions, we can model 
other types of learning as well, including associative reinforcement learning 
(Barto and Anandan, 1985; Gullapalli, 1990) and the theory of learning 
automata (with static environment) (Narendra and Thathachar, 1989). 
However, we will not pursue this here. 

1.2. Summary and Discussion of the Results Presented Here 

There are three major practical issues in this decision theoretic view of 
learning. The first is the number of random examples needed in order to be 
able to produce a good decision rule in the decision rule space 2, i.e., a 
decision rule whose expected loss is near the minimum of all decision rules 
in 2. If too few examples are used, we run into the problem of overfitting, 
where the decision rule produced performs well on the training data, but 
not on further random examples drawn from the same joint distribution 
that generated this training data. The second is the adequacy of the deci- 
sion rule space X. If 2 does not contain any decision rule with expected 
loss close to that of Bayes optimal decision rule for the particular joint 
distribution we are dealing with, then we can never hope to achieve near 
optimal performance using this decision rule space. Choosing the right 
decision rule space often requires considerable insight into the particular 
problem domain. Finally, the third practica14problem is the computational 
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complexity of the method we use to produce our decision rule from the 
training examples. This issue has been addressed extensively in the PAC 
literature, and is also addressed in Kearns and Schapire (1990), and Abe 
and Warmuth (1990). Of these three important issues, here we examine 
only the first. This issue is referred to as the problem of estimating the 
“sample complexity” of the learning problem in the PAC literature 
(Ehrenfeucht et al., 1989). 

The number of random training examples needed to avoid overtitting 
depends critically on the nature of the decision rule space used. Different 
kinds of decision rule spaces are used in different areas of learning research, 
partly because different kinds of instance and outcome spaces are used. In 
pattern recognition and statistics, the instance space X is usually a finite 
dimensional real vector space; i.e., each instance consists of a vector of real 
valued measurements of some attributes. In density estimation, a decision 
rule represents a density on X, and many choices are possible. One com- 
mon choice is a mixture of Gaussian densities (e.g., Duda and Hart, 1973; 
Nowlan, 1990). In standard regression, the outcome and decision spaces Y 
and A are identical and real valued, and linear functions are most often 
used as decision rules. For more complex outcome spaces, such as those in 
the medical diagnosis example given above, the decision rule space for 
regression is usually defined using a generalized linear model (McCullagh 
and Nelder, 1989). Similarly, in binary classification, where there are only 
two possible outcomes in Y as in the PAC model, linear threshold func- 
tions are most often used as decision rules, and there are straightforward 
generalizations for the case of k-ary classification (see, e.g., Duda and Hart, 
1973). This “linear bias” in pattern recognition and statistics is in contrast 
to that in the PAC model and other AI areas, including work in neural 
networks, in which a rich variety of decision rule spaces are used (see, e.g., 
Touretsky, 1989, 1990; Haussler, 1988, 1989). Our main goal here is to 
develop analytic tools to help understand the problem of overlitting in 
these more complex decision rule spaces. 

In order to focus on the problem of overfitting, we take a simplified view 
of learning, in which the learner chooses a decision rule space 2, and then 
tries to find a decision rule in 31c with near minimal expected loss. To do 
this, the learner looks for a decision rule that minimizes the observed 
average loss on the training examples, which is called empirical loss or 
empirical risk. For example, in standard linear regression4 the learning 
algorithm is the method of least squares; i.e., we find the linear function h 
that minimizes the average of I( y, h(.u)) = (h(x) - .v)~ over all examples 

4 For general regression with the negative log likelihood loss function, the principle of mini- 
mizing empirical loss is the same as the principle of maximum likelihood (Berger, 1985; Kiefer, 
1987). 
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(x, v) in our training set. It is well known that if we have too few training 
examples, then we tend to overlit them, and the function we find does not 
come close to minimizing the actual expected quadratic loss, which would 
be obtained by integrating over all possible (mostly unseen) examples with 
respect to the unknown joint distribution on them. This same situation 
occurs with all nontrivial decision rule spaces, including the nonlinear 
regression models defined by feedforward neural nets. 

Using certain measures of the “dimension” or “capacity” of the decision 
rule space X and classes derived from X (see below), we obtain general 
upper bounds on the number of random training examples needed so that 
with high probability, any decision rule in 2 that has small empirical loss 
on the training examples will have small actual expected loss; i.e. we get 
uniform convergence results for empirical estimates like those in Vapnik 
(1982) Dudley (1984), and Pollard (1984, 1990). We show how these give 
upper bounds on sufficient training sample size like those derived in 
Blumer et al. (1989) and elsewhere using the notion of the VC dimension, 
and generalize those results. 

As an application, we give specific bounds on the number of training 
examples needed to avoid overfitting when learning with the decision rule 
space of feedforward neural nets (Rumelhart and McClelland, 1986), 
extending previous work in Baum and Haussler (1989) and White (1990a) 
(see also related work in Anthony and Shawe-Taylor, 1990). These are the 
nets most widely used in current neural net learning research. Our model 
for feedforward neural nets is quite general in that it allows many types of 
units in the nets, including quasi-linear units (Rumelhart and McClelland, 
1986), radial basis units (Poggio and Girosi, 1989), and product units 
(Durbin and Rumelhart, 1989). 

In our general setting, successful learning means finding a decision rule 
with average loss close to minimal over all decision rules in the given 
decision rule space, rather than loss close to zero as in the PAC model. In 
addition to using an additive model as in Lineal et al. (1988), we also 
define “close to” using a measure of relative difference (the d, metric) similar 
to the standard multiplicative measure of approximation used in 
combinatorial optimization. This allows us to state the relevant uniform 
convergence bounds as generalized “Chernoff-style” (Angluin and Valiant, 
1979) bounds, as in Pollard (1986) and Breiman et al. (1984, Chap. 12), 
rather than “Hoeffding-style” bounds (as in Pollard’s (1984) results) giving 
better bounds on sufficient training sample size in some important cases. 
These two types of bounds are analogous to the two types of bounds that 
Vapnik (1982) gives in his book, in that one uses a measure of absolute 
difference and the other a measure of relative difference. However, both of 
our bounds are “two-sided”; i.e., they bound deviations both above and 
below the mean. 
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We give these upper bounds on required sample size only to give some 
indication of the order-of-magnitude dependence of sample size on certain 
critical parameters of the learning problem, and to illustrate the theory. 
They are still too crude to be used directly in practice, e.g., as explicit 
formulae for choosing an appropriate sample size. Cross validation tech- 
niques, in which some of the training examples are held in reserve and used 
instead to test the performance of the decision rules produced by the 
learning algorithm, are likely to perform better for this task in practice 
(see, e.g., White, 1990a; Weiss and Kulikowski, 1991). Nevertheless, cross 
validation is only a means of estimating the amount of overfitting in the 
learning method in particular cases; i.e. it is only an engineering trick and 
provides no scientitic explanation of the phenomenon. Our goal is to 
understand and explain overfitting in general decision rule spaces, from a 
scientific rather than an engineering viewpoint. 

Finally, we should note that in practice, many learning algorithms do 
more than just search for a decision rule in a fixed decision rule space that 
minimizes empirical loss. For example, it is common to let the decision rule 
space depend on the number of training examples available, using richer 
and richer decision rule spaces as more examples become available (see, 
e.g., White, 1990a; Blumer et al., 1989). This can allow the learning 
algorithm to produce a sequence of decision rules with expected losses that 
approach the loss of the Bayes optimal decision rule in the limit of infnite 
training sample size for a large class of possible joint distributions. The 
results given here can be used to estimate the appropriate rate at which the 
decision rule space should grow relative to the sample size to avoid over- 
fitting. Other approaches, e.g., the method of structuraf risk minimization 
introduced by Vapnik (1982), and the Bayesiun (Berger, 1985; Mackay, 
1992; Buntine and Weigend, 1991) and minimum description length (MDL) 
approaches (Barron and Cover, 1990; Rissanen, 1986), try to find a deci- 
sion rule that minimizes some function of empirical loss and decision rule 
complexity. These can also achieve expected loss approaching that of Bayes 
optimal decision rule in the limit, and may be more effective in practice. 
Although uniform convergence results such as those we develop here are 
also used in the analysis of such methods (Vapnik, 1982) (and in the 
analysis of cross-validation methods (Nolan and Pollard, 1987)), the full 
treatment of such approaches is beyond the scope of the present paper. It 
should also be noted that Bayesian methods and structural risk minimiza- 
tion can be applied even when the decision rule space includes only neural 
networks of a fixed size. An example is the recent work using weight 
penalty functions in neural net training (Weigend et al., 1990; LeCun et al., 
1990; Nowlan and Hinton, 1991; MacKay, 1992; Buntine and Weigend, 
1991). Such approaches may significantly reduce the training sample size 
needed to avoid overtitting in practice. 
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1.3. Overview of Methods Used 

We now briefly discuss the methodology and previous work used in 
obtaining our results. Our work builds directly on the work of Vapnik and 
Chervonenkis, Pollard, and Dudley on the uniform convergence of empiri- 
cal estimates (Vapnik, 1982; Pollard, 1984; Dudley, 1984) and its applica- 
tion to pattern recognition (Vapnik, 1982, 1989; Devroye? 1988). It also 
builds on the work of Benedek and Itai (1988) on PAC learnability with 
respect to specific probability distributions, and is related to the work of 
Natarajan and Tadepalli on extensions of the VC dimension to multivalued 
functions (Natarajan and Tadepalli, 1988; Natarajan, 1989b) and PAC 
learnability with respect to classes of probability distributions (Natarajan, 
1988, 1989a). In addition, Quiroz (1989) and Kulkarni (1989) have each 
independently generalized the PAC model in a related manner. 

One of the key ideas we use is the notion of an a-cover of a metric space 
(Dudley, 1989; Pollard, 1984; Benedek and Itai, 1988; Natarajan, 1989a, 
Quiroz, 1989) and the associated idea of metric dimension (Kolmogorov 
and Tihomirov, 1961) (also called the fractal dimension (Farmer, 1982)). 
This notion of dimension has played an important role in the now very 
active study of fractals in nature (Mandelbrot, 1982) especially in connec- 
tion with chaos in dynamical systems (Farmer, 1982; Farmer et al., 1983). 
Here we build further on the beautiful results of Vapnik and Chervonenkis 
(Vapnik, 1982), Dudley (1978), and Pollard (1984), which relate a type of 
generalized VC dimension for a decision rule space to the number of balls 
of <radius E required to cover the space, with respect to certain metrics. The 
sizes of the smallest such covers determine the metric dimension of the 
space. Our treatment closely parallels the approach given in Pollard (1990). 
It is interesting to note that related results connecting e-covers with the VC 
dimension have also been independently developed in Benedek and Itai 
(1988) and in recent computational geometry work (Welzl, 1988)’ This 
work seems to lead to a potentially rich area of investigation that combines 
elements of combinatorics, topology and geometry, and probability and 
measure in a novel framework. We feel that this area is not only fascinating 
from a purely mathematical standpoint, but also potentially very useful in 
machine learning and other applied fields. 

1.4. Organization of the Paper 

The remainder of the paper is organized as follows. The learning 
framework we described above in Section 1.1 is defined more formally in 

5 Specifically, Lemma 7.13 of Dudley (1978) is nearly equivalent to Lemma4.1 of Welzl 
(1988) (using the primal space instead of the dual). This result also gives a stronger version 
of Theorem 4, part (3) of Benedek and Itai (1988). We give a still stronger version of this 

result in Theorem 6 below. 
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Section 2. There we also look at the question of evaluating the performance 
of learning algorithms in terms of the number of training examples they 
use. This question is also formalized from a decision theory perspective. We 
then provide a lemma (Lemma 1) that can be used to evaluate the perfor- 
mance of learning algorithms that work by minimizing empirical loss. To 
use this lemma, we need bounds on the rate of uniform convergence of 
empirical loss estimates to true expected losses. These are given in 
Section 3. The key bound is given in Theorem 2 in Section 3, and in a more 
general version in Theorem 3. 

To use the bound from Theorem 2 we need bounds on the “random 
covering numbers” associated with the decision rule space X, the loss 
function 1, and the distribution P. These are related to the idea of an 
s-cover described above. In Section 4 we introduce Pollard’s notion of the 
pseudo dimension as a means of bounding the random covering numbers. 
Applications of this method to several learning problems are described in 
Section 5. 

The techniques of Sections 4 and 5 only apply to the case when the 
action set A is real-valued. Tools for bounding the random covering 
numbers that apply in more general cases are developed in Section 6. Here 
we introduce the notion of the capacity of the decision rule space Y? (for 
a particular loss function I), and the related notion of the metric dimension 
of 2”. In Section 7 we use these notions to obtain bounds on the perfor- 
mance (in terms of the number of training examples used) of learning 
algorithms that use multilayer feedforward neural networks, and work by 
minimizing empirical loss (Corollary 3). Finally, some further discussion of 
our results is given in the conclusion, Section 8. 

Many of the more technical proofs and definitions have been moved into 
the Appendix to make the paper more readable. The Appendix has several 
sections. Section 9.1 contains a brief overview of the theory of metric 
spaces, s-covers, and metric dimension. Notation from this section is used 
in several places in the paper. Section 9.2 deals with certain technical 
measurability requirements. Section 9.3 gives an analogue of Chernoff and 
Hoeffding bounds using the d,, metric. Section 9.4 contains the proof of 
Theorem 2. Finally, Section 9.5 contains a result on feedforward neural 
networks of linear threshold functions that is similar to that given in Baum 
and Haussler (1989), and provides a counterpart to Corollary 3 in 
Section 7. 

1.5. Notational Conventions 

We denote the real numbers by ‘$I and the non-negative real numbers by 
9l+. By log and In we denote the logarithm base 2 and the natural 
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logarithm, respectively. We use E( .) to denote the expectation of a random 
variable, and Var( .) to denote the variance of a random variable. When 
the probability space is defined implicitly from the context, we use Pr( .) to 
denote the probability of a set. However, usually the measure on the 
underlying probability space is defined explicitly using the symbol P. 

Here, P usually denotes a probability measure on some appropriate6 
o-algebra over the set Z = Xx Y, where X is the instance space and Y is the 
outcome space. We use P” to denote the m-fold product measure on Z”. 
Functions on Z and subsets of Z mentioned in what follows are assumed 
to be measurable without explicit reference. Alternately, we also view X 
and Y as random variables on some other, unspecified, probability space; 
e.g., when they are viewed as real-valued measurements. In this case P is 
viewed as a joint distribution on X and Y. In either case, the probability 
of a set Tc Z is defined by 

P(T)=[ dP(z) 
T 

(where z = (x, y) with x E X and y E Y) and the expectation of functionfon 
Z is denoted by 

E(f) = jz f(z) W,-). 
When Z is countable we also use P, with some abuse of notation, for the 
probability mass function; i.e., for ZE Z, P(z) denotes P( (z}). Hence 
P(T)=CzeT P(z) and E(S) =CrEZ f(z) P(z) in this case. When Z is 
continuous, a density associated with P (if it exists) is denoted by p. 

When Z is countable we use P( y 1 x) to denote the probability that Y = y 
given that X=x (viewing X and Y as random variables) and similarly for 
P(x( y). Hence P(. 1 X) denotes the conditional distribution on Y, given 
X= x. The marginal distribution in X is defined by’ P,,(x) = CyE y P(x, y). 
Here and elsewhere, we abbreviate P((x, y)) by P(x, y). 

’ If Z is countable then we assume this o-algebra contains all subsets of 2; otherwise we 
assume that Z is a complete, separable metric space (see Section 9.1) and that this u-algebra 
is the smallest u-algebra that contains the open sets of Z (i.e., the a-algebra of Bore1 sets). 

’ When 2 is uncountable, the marginal and conditional distributions are defined so that 

s 
j-(x. .v) dP(.Y. y) = 

J (1 
f(.Y, y) dP(ylr) co,.(x) 

z 1 Y > 

for every bounded measurable function f: 

643/100/l-7 
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Finally, we list some other notation that is used several places in the 
text, indicating which section it is defined in: 

X, Y, A, Z, and I 
9 
r,,,(P), rh(P) (true risk) 
r:(P), r*(P) (optimal risk) 
ih(Z) (empirical risk) 
i*(Z) (optimal empirical risk) 
4 
L, L, , L,, y (regret functions) 
R (big ‘L’ risk) 
m(8, 6), m(a, v, 6) (sample complexity) 
N (covering number) 
.A’ (packing number) 
dim (metric dimension) 
dim, (pseudo dimension) 
% (capacity) 

PI 
1, 
F- 
I$empirical expectation) 
d,, (L’ distance for vectors) 
d L1CPj (L’ distance for functions) 
d L1(P,pj (L’ distance for functions) 

Sections 1.1 and 2.1 
Section 2.1 
Section 2.2 
Section 2.2 
Section 2.2 
Section 2.2 
Section 2.2 
Section 2.3 
Section 2.3 
Section 2.4 
Sections 10.1 and 3.2 
Section 10.1 
Section 10.1 
Section 4 
Section 6 
Section 6 
Section 3 
Section 3 
Section 3 
Section 3.2 
Section 4 
Section 6 

2. LEARNING AND OPTIMIZATION 

We now further formalize the basic problem of learning, as introduced in 
Section 1.1. We introduce a formal notion of a learning algorithm, and a 
higher level loss function, which we call a regret function, that measures 
how well the learning algorithm performs. The regret function is defined in 
terms of the low level loss function I discussed in the previous section. 
Finally, we show how an algorithm can solve the learning problem by 
solving a related optimization problem. 

2.1. The Basic Components X, Y, A, X, 9, and 1 

We first review and further formalize the six components of the basic 
learning problem introduced in the previous section: X, Y, A, Z, 9, and 1. 
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The first four components are the instance, outcome, decision, and decision 
rule spaces, respectively. The first three of these are arbitrary sets, and 
the fourth, J?, is a family of functions from X into A. These have been 
discussed extensively in the previous section. 

The fifth component, 9, is a family of joint probability distributions on 
Xx Y. These represent the possible “states of nature” that might govern the 
generation of examples. The set Z = Xx Y is called the sample space. We 
assume that examples are drawn independently at random according to 
some probability distribution P E 9 on the sample space Z. A sequence of 
examples is called a sample. In what follows’ we usually assume that B 
includes all probability distributions on Z. Hence our results are distribu- 
tion independent. 

The last component, the loss function 1, is a mapping from Y x A into 93. 
In this paper we assume that 1 is bounded and nonnegative; i.e., 0 < Id M 
for some real M. When Y and A are finite it is always possible to enforce 
this condition by simply adding a constant to 1, which does not change the 
learning problem in any essential way. When either Y or A is infinite, the 
learning problem sometimes needs to be restricted to meet this condition. 
For example, in regression’ we might restrict the possible parameter vec- 
tors in A and/or the possible outcomes in Y such that for every y E Y and 
a E A, p( y; a) 2 b for some constant b. We can then take M= -log b. In 
density estimation, the same thing can be accomplished by restricting the 
instance space X to a bounded subset of ‘$3’ on which all densities in 2 
have values uniformly greater than b and less than B for constants 
0 <b < B. We can then add log B to the loss function to make it positive. 
The same method works for estimating distributions on discrete spaces: we 
restrict ourselves to a finite instance space X and demand that for all XE X 
and all probability distributions h E%, h(x) > b > 0 (see, e.g., Abe and 
Warmuth, 1990; Yamanishi, 1990). These restrictions are often reasonable 
in practice--e.g., most measurements naturally have bounded ranges-but 

* It is, however, possible and in fact common to assume that B is a very specific class of 
probability distributions on 2. For example, let X= R”. Then if we are doing classification 
learning and Y is discrete we may assume that y  is selected according to an arbitrary distribu- 
tion on Y, and for each y. P(xl y) is a multi-variate Gaussian distribution on X (Duda and 
Hart, 1973). On the other hand, if we are doing linear regression, then Y is real-valued and 
we might assume that x is selected according to an arbitrary distribution on X, and y  is a 
linear function of x with additive Gaussian noise. In PAC learning theory we have a discrete 
analog of the latter case. Here we usually have X= (0, 1 f”, Y = {0, 1 }, and y  a Boolean 
function of x of a particular type (e.g., defined by a small disjunctive normal form formula), 
possibly plus random noise. 

9 Note that to get bounded loss in linear regression, X must be a bounded subset of R” as 
well, since we can’t bound Y without bounding X. The coefficients of the functions in 2 must 
also be bounded. 
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they can be annoying (see Vapnik (1989) and Pollard (1984, 1990) for 
alternative approaches for unbounded loss functions). 

2.2. Measuring Distance from Optimality with the d, Metric 

For a given decision rule h E 2 and distribution P on the sample space 
Z, the expected loss of h is the average value of 1( y, h(x)), where the 
example (x, y) is drawn at random according to P. It is defined by 

r,,,(P) = rh(p) = E(~I’, 4x))) = IT 4.~ h(x)) dP(x, Y) 

(the subscript I is omitted when the loss function is clear from the context). 
Since I is bounded, this expectation is finite for every distribution P. In 
decision theory the expected loss rh(P) is called the risk of h when P is the 
true underlying distribution. This quantity generalizes the notion of the 
error of h used in computational learning theory. 

In Section 1.1 we stated the goal of learning quite informally: Given 
examples chosen independently at random from some unknown probability 
distribution P E 9, find a decision rule h in X that comes “close to” mini- 
mizing the risk rh(P) over all hE%‘. Let r,?(P) (or r*(P) when I is clear 
from the context) denote the inlimum of rh(P) over all h in the decision 
rule space X. To formalize our notion of a basic learning problem, we first 
need to say what we mean that r,;(P) is “close to” r*(P). 

Let r = r,;(P) and s = r*(P). One natural interpretation is to demand that 
Ir --sI GE for some small E > 0. However, we see in Section 3.1 that 
sometimes it is better to use a relative measure of distance. For any real 
v > 0, let d,, be the function defined by 

b-4 
d,,(r, s) = ~ 

v+r+s 

for any non-negative reals r and s. It is straightforward but tedious to 
verify that d, is a metric on % +. The d,, metric is similar to the standard 
function 

Ir-sl 

used to measure the difference between the quality r of a given solution and 
the quality s of an optimal solution in combinatorial optimization. 
However, our measure has been modified to be well-behaved when one or 
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both of its arguments are zero, and to be symmetric in its arguments (so 
that it is a metric). Three other properties of d,, are also useful: 

1. For all non-negative reals Y and s, 0 6 d,(r, s) < 1. 

2. For all non-negative r<sd t, d,,(r, s) <d,(r, t) and d,(s, t)d 
d,(r, t). 

3. For O<r, s<A4, Ir-sl/(v+2M)<d,(r,s)<Ir-s//v. 

We refer to the second property by saying that d,, is compatible with the 
ordering on the reals. 

2.3. The Regret Function L and the Big “L” Risk R 

Once we have specified how we measure closeness to optimality, we still 
need to specify our criteria for a successful learning algorithm. Do we need 
to have the risk of the decision rule found close to the optimum r,?(P) with 
high probability, or should its average distance from r?(P) be small? Do 
we measure success in terms of the performance of the algorithm on the 
worst case distribution in 9, or do we use some average case analysis over 
distributions in 9? These questions lead us right back to decision theory 
again, but this time at a higher level in the analysis of learning. 

To see this, consider the structure of a learning algorithm d. For 
any sample size m, the algorithm d may be given a sample 
z= ((x,7 ~11, . ..> CL, Y,)) d rawn at random from 2” according to an 
unknown product distribution P”, where P E 8. For any such Z it chooses 
a decision rule &‘(z’) E A?. Thus abstractly, the algorithm defines a function 
d from the set of all samples over Z into X; i.e., sd: Urn3 I Z” + 2. Since 
we are not requiring computability here, we call such d a learning method. 
When PEP is the actual “state of nature” governing the generation of 
examples, and the algorithm produces the decision rule h E %‘, let us say 
that we suffer a non-negative real-valued regret L(P, h). Thus, formally 
L:.YxxD%+. In our treatment here, the regret function L is derived 
from the loss function I, and measures the extent to which we have failed 
to produce a near optimal decision rule, assuming P is the true state of 
nature (i.e., the amount of “regret” we feel for not having produced the 
optimal decision rule). Finally, for each possible state of nature P, the 
average regret suffered by the algorithm, over all possible training samples 
ZE Z”, is the big “L” risk of that algorithm under P for sample size m. This 
big “I” risk is defined formally by 

R L(P, &‘(z’)) dP”(i). 

The goal of learning is to minimize big “I” risk. 
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We illustrate these definitions with a few examples. First suppose we 
want to capture the notion of successful learning that is used in the PAC 
model. Then one possibility is to introduce an accuracy parameter E > 0 
and define the regret function L = L, by letting L,(P, h) = 1 if 
r,,,(P) -r:(P) > E, and L&P, h) = 0 otherwise. Thus we suffer regret only 
when the decision rule h produced by the learning algorithm has risk that 
is more than E from optimal, measured by the absolute difference metric. 
For this definition of regret, the big “L” risk R,+,,,(P) measures the 
probability that the decision rule produced by d has risk more than E from 
optimal, when d is given m random training examples drawn according to 
P. We then demand that this big “L” risk be small, i.e., smaller than some 
given confidence parameter 6 > 0. 

In the PAC model it is commonly assumed that the examples given to 
the algorithm d are noise-free examples of some underlying target function 
f~ &. In this case the risk r*(P) of the optimal decision rule in 2 is zero, 
and hence L,(P, h) = 1 o rh,,(P) > E. Hence demanding big “L” risk at 
most 6 gives the usual PAC criterion that the risk (or “error”) of the deci- 
sion rule (or “hypothesis”) produced by r;9 must be greater than E with 
probability at most 6. 

The regret function L can also be defined similarly, but using the d, 
metric to measure distance from optimality, instead of the absolute 
difference. Specifically, for every v > 0 and 0 <IX < 1, we can define the 
regret function L,, by letting L,,(P, h)= 1 if d,(r,,(P), r:(P))>cc, and 
L,,(P, h) = 0 otherwise. In this case the big “L” risk RLQ,,&,,(P) measures 
the probability that the risk of the decision rule produced by the algorithm 
r;8 has distance more than c( from optimal in the d, metric, when the algo- 
rithm is given m random training examples drawn according to P. We see 
in Sections 2.4 and 3.1 why this sometimes gives a more useful and flexible 
definition of regret. In fact, in this paper, we will give our main results in 
terms of the family {L,,,: v > 0 and 0 < CI < 1) of regret functions, and 
show how corresponding results may be derived as corollaries for the 
family {L, : E > 0} of regret functions. 

Other regret functions are also possible and lead to different learning 
criteria. For example, another, perhaps simpler, way to define regret is to 
let L(P, h) =r,,JP)-r:(P). When r:(P) =O, as it does in the standard 
noise-free PAC model, this definition makes the regret L equal to the risk 
r,,,(P); i.e., the expectation of the underlying loss 1. In this case the big “L” 
risk R L,d,,(P) measures the expectation of the loss incurred by the 
learning algorithm d when it is given m random training examples drawn 
according to P, forms a decision rule h, and then uses h to determine the 
action on one further independent random example drawn according to P. 
This gives a generalization of the learning criterion studied in Haussler et 
al. (1990). When r:(P) # 0, the big “L” risk gives the expectation of the 
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amount of such loss above and beyond the expected loss that would be suf- 
fered if the optimal decision rule were used. In particular, in density estima- 
tion, where P and h are both densities on the instance space X, if PE X 
then defining the regret by L(P, h)=r,,(P)-r:(P) makes it equal to the 
Kullback-Leibler divergence from P to h. Hence the big “L” risk is the 
expected Kullback-Leibler divergence of the decision rule h returned by the 
algorithm from the true density (see Sections 1.1.3 and 1.1.4). 

It is also possible to define the regret function L directly, without using 
an underlying loss function 1. For example, in density estimation it is 
possible to use other measures of the distance between two densities; e.g., the 
Hellinger distance or the total variational distance, as in Barron and Cover 
(1990) and Yamanishi (1990). The criterion from Kearns and Schapire 
(1990) for inferring a good model ofprobabilit~ can also be defined using an 
appropriate regret function, without defining an underlying loss 1. 

2.4. Full Formalization of the Basic Learning Problem 

Having defined the regret function, and thereby the big “L” risk function, 
we still face one last issue: do we want to minimize big “L” risk in the 
worst case over all possible states of nature P in .?J”, or do we want to 
assume a prior distribution on possible distributions in 9, so that we can 
define a notion of “average case” big “L” risk to be minimized? The former 
goal is known as minimax optimality, and has been used in the PAC model. 
The latter is the Buyesiun notion of optimality (Berger, 1985; Kiefer, 1987), 
and has been used in several approaches to learning in neural nets based 
on statistical mechanics (Denker et al. 1987; Tishby et al., 1989; Gyorgyi 
and Tishby, 1990; Sompolinsky et al., 1990; Opper and Haussler, 1991a, 
1991b). Unfortunately this last question has no clear cut answer, and leads 
us directly into a longstanding unresolved debate in statistics (see, e.g., 
Lindley (1990) and following discussion.). Since we have set out to 
generalize the PAC model, and since our results are best illustrated in the 
minimax setting, we formalize the notion of a basic learning problem using 
the minimax criterion. In subsequent work we hope to further explore this 
Bayesian setting. (For recent work in Bayesian approaches to neural 
network learning see MacKay (1992), Buntine and Weigend (1991), and 
for Bayesian versions of the PAC model see Haussler et al. (1991b) and 
Buntine (1990).) 

We can now define exactly what we mean by a basic learning problem, 
and what it means for a learning method to solve this problem in this 
minimax setting. 

DEFINITION 1. A basic learning problem is defined by six components, 
X, Y, A, X, 9, and Y, where the first five components are as defined in 
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Section 2.1, and the last component, Y, is a family of regret functions 
as defined in Section 2.3 (e.g., 2 = {L,,,,: v >O and O< N < l}, or 
Y = {L, : E > 0} for some loss function 1). Let d be a learning method as 
defined in Section 2.3. We say that ,d solves the basic learning problem if 
for all L E Y and all 0 < 6 < 1 there exists a finite sample size vz = m( L, 6) 
such that 

for all PE 9, RL3,d.m(P) d 6. 
The sample complexity of the learning method ~4 is the smallest such 
integer valued function m(L, 6). When 2 = {L,,,: v > 0 and 0 < tl < 1 } we 
denote m(L,,, 6) by m(a,v,6) and when 6P={LE:&>0} we denote 
m(L 6) by m(E, 6). 

As discussed above, this definition generalizes the PAC criterion, and 
several others as well. In fact, this definition is quite generous, in that 
sample size needed to get the big “L” risk less than 6 is only required to 
be finite for each 6 > 0. In particular, using property (3) of the d,. metric 
from Section 2.2, when the underlying loss function I is bounded, as we 
assume here, any algorithm J&’ solves the basic learning problem using the 
L,,,, class of regret functions if and only if it solves it using the L,, class. 
Thus it does not matter which of these two classes of regret functions we 
use. However, in practice it is the sample complexity of d that is critical, 
and this will depend on which class of regret functions are used. 

The nature of this dependence is seen more clearly when we expand the 
condition 

R L..d,m(p) d 6 

for L = L, and L = La.,. When L = L,, this condition means that given m 
random training examples drawn according to P, with probability at least 
1 - 6, the decision rule L produced by the algorithm d satisfies 

r,;,,(P) <r.?(P) + E; 

i.e., the risk of h is at most E greater than that of the optimal decision rule 
in 2. When L = L,,,, this condition is the same, except that we require 

l+a CiV 
rfi.,(P) d I-CC r.?(P) + - 1-M’ 

Thus in the former case, the sample complexity is defined in terms of small 
additive deviations from optimality, and in the latter, we allow both 
additive and multiplicative deviations. These deviations are controlled by 
the parameters TV and v. 
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For example, when r?(P) = 0 as in the standard PAC model, then setting 
a = 4 and v = E makes the L, and L,,,, conditions equivalent; each reduces 
to the PAC condition 

r,;.,(P) d E. 

When r:(p)>O, the L,.,, condition approximates the L, condition when a 
is small and v % c/a. In particular, since we are assuming that the under- 
lying loss function I is bounded between 0 and M, we have 0 d rl;,,(P), 
r?(p) < M, and property (3) of the d, metric shows that the L,, ,, condition 
with v =2M and a =s/4M implies the L, condition. This shows how the 
two parameter L,,,, condition is generally more flexible than the single 
parameter L, condition. 

2.5. Relation between Learning and Optimization 

Let us assume that the underlying loss function I is fixed, and we are 
using either the L, or the L,.,, regret functions derived from 1. In order to 
solve a basic learning problem, we must find, with high probability, a 
decision rule fi with risk close to optimal. As the true distribution P is 
unknown, to do this we must rely on estimates of rh(P) for the various 
h E % which are derived from the given random training sample. For a 
given h E Y? and training sample ?= (;, , . . . . z,), where 2; = (x,, y,) E Z, let 
i,,(f) denote the empirical risk on i; i.e., ih(Z) = (l/m) Cy=, I( f,, h(x;)). Let 
i*(Z) =inf{i,(z): /ZE 2). We can then define a natural optimization 
problem associated with the basic learning problem: given the training 
sample z’, find a decision rule 6~2 such that i,(Z) is close to i*(Z), i.e., 
a decision rule whose empirical risk on the training sample is close to 
minimal. 

Solving the optimization problem does not automatically solve the learn- 
ing problem. We need to have good empirical risk estimates as well. Since 
I is bounded, for every h E H, as the sample size m -+ co, Ph(z) + rh(P) with 
probability 1. We will say that the empirical risk estimates of decision rules 
in T? converge uniformly to the true risk if for all E and 6 > 0 there exists 
a sample size m such that when the zi E 5, 1 d id m, are drawn indepen- 
dently at random from Z according to the distribution P, with probability 
at least 1 - 6, we have ~(f,,(?), rh(P)) d E for all h E 2. Here p is some 
metric on !N +; e.g., either the absolute difference or the d, metric. 

The following result shows that uniform convergence of the empirical 
risk estimates, along with a learning method d that gives a randomized 
solution to the optimization problem on the estimates, gives a solution to 
the basic learning problem. We state it for the d,. metric, but the same 
argument works also for the absolute difference metric. 
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LEMMA 1. Let v > 0 and 0 < a, 6 < 1. Suppose the sample size 
m = m(a, v, 6) is such that for alI probability distributions P E 9 

Pr(3h E X: dV(ih(Z), rh(P)) > a/3) 6 o/2, 

where the zip?, 1 <i< m, are drawn independently at random from Z 
according to the distribution P. Suppose also that the algorithm d is such 
that for all P E 9 

Pr(d,(f,&i), i*(Z)) > a/3) ,< 612, 

where Z is drawn randomly by P as above. Then for all P E 9 

Wd,(r,JP), r*(P)) > a) < 6; 

i.e., d solves the basic learning problem for the family of L,. regret 
functions and has sample complexity at most m(a, v, 6). 

Proof. By the triangle inequality for d,, if 

1. d,(r ,dcs,(p)T f.dtI,(3) C 43, 
2. d,(i,tl,(z’), i*(Z)) d a/3, and 

3. d,(i*(z’), r*(P)) d a/3, 

then 

4(r,,s,(p), r*(P)) G a. 

The second assumption of the lemma states that (2) holds with probability 
at least 1 - 6/2. The first assumption implies that both (1) and (3) hold 
with probability at least 1 - J/2. (If (3) fails then we can find a decision 
rule h E .X such that dv(ih(z), r,JP)) > a/3. Here we use the compatibility of 
d, with the ordering on the reals.) Hence with probability at least 1 - 6 all 
of (l)-(3) hold. The result follows. 1 

In statistics, this type of result is called a consistency theorem about the 
“statistic” (i.e., the decision rule) computed by the learning method SS’. This 
use of the term “consistency” differs sharply from that common in PAC 
learning research. 

3. UNIFORMLY GOOD EMPIRICAL ESTIMATES OF MEANS 

In this section we concentrate on the problem of bounding the number 
of random examples needed to get good empirical estimates of the risk of 
each of the decision rules in a decision rule space S’. For each decision rule 
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h E X and example z = (x, y) E Z, let Ih(z) = I( y, h(x)). As in the previous 
section, we assume that I is a nonnegative bounded loss function taking 
values in the interval [0, M]; thus for each decision rule h, I,, defines a 
random variable taking values in [0, M]. The value of l,, on an example 
(x, y) is the loss incurred when h is used to determine the action to take, 
for instance x, and the outcome is y. The risk of h is just the expectation 
of I,; i.e., 

rhU’) = E(L) = jz b(z) Wz). 
Furthermore, if z’= (zr , . . . . z,) is a sequence of examples from Z, then the 
empirical risk of h on Z is the empirical estimate of the mean of Zh based 
on the sample z’, which we denote by eI(lh); i.e., 

ih(Z) = E&J = t ,f Zh(Zi). 
1=1 

Let I, = {E, : h E X}. We need to draw enough random examples to get a 
uniformly good empirical estimate of the expectation of every random 
variable in I,. 

The general problem of obtaining a uniformly good estimate of the 
expectation of every function in a class F of real-valued functions has been 
widely studied (see, e.g., Vapnik, 1982, Pollard, 1984, Dudley, 1984, and 
their references), If no assumptions at all are made about the functions in 
F, we immediately run into the problem that some functions in F could 
take on arbitrarily large values with arbitrarily small probabilities, making 
it impossible to obtain uniformly good empirical estimates of all expecta- 
tions with any finite sample size. This problem can be avoided by making 
assumptions about the moments of the functions in F, as in Vapnik (1982), 
or by assuming that there exists a single non-negative function with a finite 
expectation (called an envelope) that lies above the absolute value of every 
function in F, as in Pollard (1984) and Dudley (1984). In our case, when 
the loss takes only values in [0, M], then the constant function M serves 
as an envelope. This case is especially nice since this same envelope works 
for all distributions on the domain Z of the functions in F. 

The usual measure of deviation of empirical estimates from true means 
is simply the absolute value of the difference. Thus we would say that the 
empirical estimates for the expectations of the functions in F converge 
uniformly to the true expectations if as the size of the random sample z’ 
grows, 

Pr(3fE F: lB,(f) - E(f)/ > E) 
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goes to zero for any E > 0. (This is called (unijiorm) conuergence in probabil- 
ity; see, e.g., Billingsley (1986)). Vapnik, Dudley, Pollard, and others have 
obtained general bounds on the sample size needed so that 

Pr(3feF: [l&(f)-E(f)\ >E)<c? 

for E, 6 > 0 (Pollard, 1984; Dudley, 1984; Vapnik, 1982). Vapnik also 
obtains better bounds in some important cases by considering the relative 
deviation of empirical estimates from true expectations. He looks at bounds 
on the sample size needed so that 

Pr 3fEF.wf)-h(f)>I: 

E(f) 

and also bounds on the sample size needed so that 

(Anthony and Shawe-Taylor (1990) also obtain bounds of the latter form.) 
Note that these are one-sided bounds, in that they only bound the prob- 
ability that the empirical mean is significantly smaller than the true mean. 
While extremely useful, as we mentioned in the previous section, these 
measures of deviation suffer from a discontinuity at E(f) = 0, and lack of 
convenient metric properties. As in Pollard (1986), we give bounds on the 
sample size needed so that 

Pr(3feF: d,(&(f), E(f))>cc) 

=Pr 3fEF: 
i 

l@,(f)-E(f)1 >cI 

v+i&(f)+E(f) 

i.e., the deviation measured using the d, metric.” By setting v and c( 
appropriately, we obtain results similar to those of Pollard (1984) and 
Vapnik (1982) as special cases of our main theorem. However, our results 
are restricted to the case where all functions in F are positive and 
uniformly bounded. 

lo Pollard (1986) also gives results that can be used to bound the sample size needed so that 

Pr 3f~F: 
( 

l&(f) - E(f)1 

v+m7i+vm’u <6v > 

in analogy with the second type of bound given by Vapnik, except that these bounds are 
two-sided. We do not pursue this further here. 
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3.1. The Case of Finite F 

Before we consider the general case, it is useful to see what bounds we 
can get in the case that F is a finite set of functions. Here we can easily 
prove the following. 

THEOREM 1. Let F be a finite set of functions on Z with 0 <f(z) < A4 for 
allfEF andzEZ. Let Z=(z,,...,z, ) be a sequence of m examples drawn 
independently from Z according to any distribution on Z, and let E > 0. Then 

Pr(3f EF: I@,(f)-E(f)1 >&)621FI ep2E2miM2. 

For 0 < 6 < 1 and sample size 

m>$(lnlFl +lni) 

this probability is at most 6. Further, for any v > 0 and 0 < tl < 1, 

Pr(3f E F: d,(@,(f ), E(f)) > tl) d 2lFl e-Z2vmiM. 

For 0 < 6 < 1 and sample size 

m>-$-(lnlFl+ln$ 

this probability is at most 6. 

ProoJ For the second part of the theorem, using Bernstein’s inequality 
(see, e.g., Pollard, 1984) it is easy to show that for any single function f 
with O<f GM, 

Pr(d,(E,(f), E(f)) > CI) < 2e~“2”“‘M. 

Details are given in Lemma 9, part (2) in the Appendix. It follows that the 
probability that there is any f E F with d,(fi?(f ), E(f )) > a is at most 
2lFI e -‘a2vm’M. Setting this bound to 6 and solving for m gives the result on 
the sample size. The proof of the first part of the lemma is similar, except 
we use Hoeffding’s inequality (see, e.g., Pollard, 1984), which implies that 
for any singlef, 

Pr(lE,(f)-E(f)] >E),<2e-Z”Z”‘M2. 1 

By letting F = I,, this theorem can be used in conjunction with 
Lemma 1 from the previous section to obtain bounds on the sample com- 
plexity of learning algorithms that minimize empirical risk. Here we can 
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use either the L, or the L,, family of regret functions. In the former case 
we get a sample complexity 

m(E,d)=o 4 logli,l+log~ 
( ( >> 

. 

In the latter case we get a sample complexity 

m(a,v,6)=0 $ log,/,, +logi 
( ( >> 

. 

(1) 

As shown in the previous section, a generalization of the PAC learning 
model can be obtained by using either the L, or the L,,, regret functions, 
in the latter case by setting a = 4 and v = E. Note that plugging this latter 
setting into (2) gives a sample complexity 

m(E,a)=O $ logll,l+log~ 
i ( >> 

) (3) 

a significant improvement over (l), which is quadratic in M/E. Thus the 
generalization of the PAC model using the d, metric to measure distance 
from optimality, and the resulting L,, family of regret functions, offers new 
insight in this regard. (Vapnik’s (1982) use of the relative difference 
between empirical estimates and true expectations also has this advantage; 
see Anthony and Shawe-Taylor ( 1990) and also the Appendix of Blumer 
et al. (1989).) 

3.2. The General Case 

The main task of this section is to generalize Theorem 1 to infinite collec- 
tions of uniformly bounded functions. The basic idea is simple: we replace 
the infinite class F of functions with a finite class F, that “approximates” 
it, in the sense that each function in F is close to some function in F,,, and 
argue that some type of uniform convergence of empirical estimates for F, 
implies uniform convergence for F. In the simplest version of this tech- 
nique, the choice of F, depends only on F and the distribution P, as in the 
“direct method” discussed in Section II.2 of Pollard (1984) (see also 
Vapnik (1982, Sect. 6.6), Dudley (1984, Chap. 6), Benedek and Itai (1988), 
and White (1990a)). However, more general results (apart from certain 
measurability constraints) are obtained by allowing F, to depend on the 
particular random sample z’ (e.g., Pollard (1984, Chap. 2)). Here F, is 
called a “random cover,” and its size is called a “random covering 
number.” It is this type of result that we derive here. 
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We need a few preliminary definitions to introduce the notions of 
E-covers and metric dimension. A more general treatment of these ideas is 
given in the Appendix, Section 9.1. This more general treatment will be 
used later, but the following definitions suffice for this section. 

For any real vectors I = (.x1, . . . . x,) and F= ( y,, . . . . vm) in YI”‘, let 
d,l(.?, y’) = (l/m) x7=, Ixi - yil. Thus d,l is the L’ distance metric. Let T be 
a set of points that lie in a bounded region of Sm. For any c > 0, an e-couer 
for T is a finite set N c !IY’ (not necessarily contained in T) such that for 
all 2~ T there is a 9~ N with dLl(,?,j7) GE. The function N(E, T) denotes 
the size of the smallest E-cover for T. We refer to J~/“(E, T) as a covering 
number. 

Following Kolmogorov and Tihomirov (1961) we define the upper metric 
dimension of the set T of points by 

dim(T) = limsup 
1% NE, T) 

E’O l%(l/&) . 

The lower metric dimension, denoted by d&r, is defined similarly using 
liminf. When dim(T) =w(T), then this quantity is denoted dim(T), 
and referred to simply as the metric dimension of T. Note that if 
Jy^(s, T) = (g(s)/&)“, where g(E) is polylogarithmic in l/s, then dimf T) = n. 
Hence the metric dimension essentially picks out the exponent in the rate 
of growth of the covering number as a function of l/a. 

Assume all functions in F map from 2 into [0, M]. For any sample 
z= (Z’) . ..) z,), ~with zi E Z, let 

F,i= {(fh), Jk,,)):j-EF}. 

We call F,? the restriction of F to 2. Note that F,, is a set of points in the 
m-cube [0, M]“. We can consider the size of the covering number 
JV(E, F,,) as giving some indication of the “richness at scale x E” of the 
class F of functions, restricted to the domain zr, . . . . z,. The metric dimen- 
sion of F,? gives some indication of the “number of essential degrees of 
freedom” in this restriction of F. 

When zl, . . . . z, are drawn independently at random from Z, the random 
cooering number E(JV(E, F,,)) gives some indication of the “richness” of F 
on a “typical” set of m points in the domain Z. Note that for finite F, we 
have &‘“(E, F,?) < IFI for all E and all samples 2, and hence the random 
covering number E(J(r(.s, F,?)) < JFI for all E, all sample sizes m, and all 
distributions on Z. The main result about uniform empirical estimates for 
infinite classes of functions is similar to Theorem 1 except that the random 
covering numbers are used in place of (FJ. 
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THEOREM 2 (Pollard, 1986). Let F be a permissible” set of functions on 
ZwithObf(z)<MforallfEFandzEZ.Let Z= (2,) . . . . z,) be a sequence 
of m examples drawn independently from Z according to any distribution 
onZ. Thenforanyv>OandO<r<l, 

COROLLARY 1 (Pollard, 1984). Under the same assumptions as above, 
for all E > 0, 

Pr(3f E F: IfiI( f) - E(,f)l > E) d 4E(,H(~/l6, F,,)) e “2m”‘8M2. 

Proof of Corollary. This follows directly from the above result by 
setting v = 2M, and c1= s/4M. To see this, note that property (3) of the d, 
metric (section 2.2) implies that (r - SI 6 E whenever d,(r, s) < c( for all 
0 < r, s < M when this setting of v and CI is used. 1 

The constants in these results are only crude estimates. No serious 
attempt has been made to minimize them. (See the recent results of 
Talagrand (1991) for much better constants for Corollary 1). 

The bound in this latter result depends critically on the relative 
magnitudes of the negative exponent in e-E2~“28M2 and the exponent in the 
expectation of the covering number .Y(&/l6, F,?), which reflects the extent 
to which F,? “fills up” the m-cube [0, Ml”. For example, if F,, has metric 
dimension at most n for all m and all 2, then there is a constant c0 such 
that for any ‘1 >O, X(.5/16, F,?) 6 (c,M/&)~+~ for suitably small E. In this 
case the negative exponential term eventually dominates the expected 
covering number, and beyond a critical sample size 

the bound goes to zero exponentially fast. We see examples of this in the 
following section, where we give bounds on the metric dimension of F,, in 
terms of a combinatorial parameter called the pseudo dimension of F. The 
theorem actually shows that this exponential drop off occurs even if this 
metric dimension bound holds only for “most” Z. 

On the other hand, if with high probability F,? “tills up” the m-cube 
[0, M]” to the extent that .M(s/16, F,:) z (c,Js)“‘, which is as large as 
possible, then the covering number dominates, and the bound is trivial. 
Results in Vapnik (1982), (Theorem A.2, p. 220) indicate that uniform 
convergence does not take place in this case. Similar remarks apply to the 
bound given in Theorem 2, which uses the d,, metric. 

” This is a measurability condition defined in Pollard (1984) which need not concern us in 
practice. Further details are given in Section 9.2 of the Appendix. 
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The proof of Theorem 2 follows the proof of Pollard’s Theorem 24 
(Pollard, 1984, p. 25) in general outline. However, the use of the d, metric 
necessitates a number of substantial modifications. The approach taken 
here is different from that taken (independently, but prior to this work) in 
Pollard (1986). Still different, and more involved, techniques are used in 
the more general theory of weighted empirical processes developed by 
Alexander (1985, 1987). While the proof of Theorem 2 we give is simpler, 
it is still somewhat lengthy, so it is given in Appendix 9.4. 

Actually, we can prove a slightly stronger result than Theorem 2. This 
result is obtained by bounding the probability of uniform convergence on 
a sample of length m in terms of the expected covering numbers associated 
with a sample of length 2m, and by expanding the expectation to include 
the negative exponential term with a “truncation” at 1. It turns out that 
this saves us a factor of $ in the negative exponential term. We also include 
special bounds for the case that F,? is always finite. This case comes up, for 
example, when F = I, and we use the discrete loss function 1, as in the 
PAC learning model. 

THEOREM 3. Let F be a permissible set of functions on Z with 
O<f(z)<M for all feF and zEZ. Assume v>O, O<cr<l, and m>l. 
Suppose that Z is generated by m independent random draws according to any 
probability measure on Z. Let 

p(a, v, m)=Pr{ioZm: 3f EF with d,@:(f), E(f))>cc}. 

Then 
p(cr, v, m) 6 2E(min (2N(crv/8, F,,, dL1) ec”2’m’8M, 1)) 

where the expectation is over z’ 
is finite for all ZE Z2” then 

drawn randomly from Z’“. If in addition F,? 

p(a, v, m) < 2E(min(2 lF,J e-X2vm’2M, 1)). 

Theorem 2 is obtained as a corollary of this result by substituting m/2 
for m and not taking the minimum with 1 in the left hand side of the first 
bound for p(cc, v, m). We use Theorem 3 to obtain slightly better constants 
in some of the results in the sequel. 

4. PSEUDO DIMENSION OF CLASSES OF REAL-VALUED FUNCTIONS 

In this section we look at one way that bounds on the covering numbers 
appearing in Theorem 2 can be obtained. This technique, due to Pollard 
(1984), who extended methods from Dudley (1978) is based on certain 
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intuitions from combinatorial geometry. It generalizes the techniques based 
on the Vapnik-Chervonenkis dimension used in Blumer et al. (1989), 
which apply only to (0, 1 }-valued functions. We begin by establishing 
some basic notation. 

DEFINITION 2. For x E ‘3, let sign(x) = 1 if x > 0 else sign(x) = 0. For 
x’= (x1 ) . ..) xd) E ‘%‘, let sign(Z) = (sign(x,), . . . . sign(x,)) and for Tc ‘Sd let 
sign(T) = Isign( ,?E T}. For any Boolean vector b = (b,, . . . . bd), (2~ ‘91d: 
sign(Z) = 6) is called the 6orthant of !Rd, where we have, somewhat 
arbitrarily, included points with value zero for a particular coordinate in 
the associated lower orthant. Thus sign(T) denotes the set of orthants 
intersected by T. For any TC 91id, and ,?E’%‘, let T+x’= {y’+x’: GET}; 
i.e., the translation of T obtained by adding the vector I We say that T is 
full if there exists x’ E !Rid such that sign( T + x’) = { 0, 1}$ i.e., if there exists 
some translation of T that intersects all 2d orthants of 93’. 

The following result is well known and can be proved in a variety of 
ways. For example, it follows easily from well known bounds on the num- 
ber of cells in arrangements of hyperplanes (see, e.g., Edelsbrunner, 1987). 
We give an elementary proof using a technique from Dudley (1978). 

LEMMA 2. No hyperplane in ‘Sd intersects all orthants of !Rd. 

Proof. Let T be a hyperplane in ‘3’. Choose a vector Z?E ‘33’ as follows. 
If T includes the origin, then let I be any vector that is orthogonal to T 
and has at least one strictly negative coordinate. (For any non-zero 
orthogonal vector 9, if x’ does not have a negative coordinate then -x’ 
does.) Otherwise let x’ be the (non-zero) vector in T on the line per- 
pendicular to T that passes through the origin. To complete the proof, we 
show that for all YE T, sign( y’) #i - sign(Z), where i denotes the all l’s 
vector. 

Suppose to the contrary that sign( y’) = i - sign(?) for some YE T. This 
implies that the inner product Cf=, xi yi is non-positive, and is in fact 
strictly negative if either x’ or y’ contain a strictly negative coordinate. 
However, by our choice of I, either x’ is orthogonal to y’ and contains a 
strictly negative coordinate, giving an immediate contradiction, or x’ is 
non-zero and x’ is orthogonal to jJ-- x’. In this last case, 

which is again a contradiction, since the left side is non-positive while the 
right side is strictly positive. 1 

It follows from this lemma that if T is contained in a hyperplane of ‘3Jd 
then T is not full. 
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DEFINITION 3. Let F be a family of functions from a set Z into %. 
For any sequence Z= (zl, . . . . zd) of points in Z, let FII= 

{(f(z,), . . ..f(zci)).f~F). If F,, is full then we say that z’ is shattered by F. 
The pseudo dimension of F, denoted dim,(F), is the largest d such that 
there exists a sequence of d points in Z that is shattered by F. If arbitrarily 
long finite sequences are shattered, then dim,(F) is finite. 

It is clear that when F is a set of (0, 1 j-valued functions then for any 
sequence z’ of d points in Z, F ,? is full if and only if F ,? = { 0, 1 } ‘. Thus in 
this case dim,(F) is the length d of the longest sequence of points z’ such 
that FIT-= (0, 1 }“. This is the definition of the Vapnik-Chervonenkis 
dimension of a class F of (0, 1 }-valued functions (Vapnik, 1982; Haussler 
and Welzl, 1987; Blumer et al., 1989). Thus the pseudo dimension 
generalizes the Vapnik-Chervonenkis dimension to arbitrary classes of 
real-valued functions. 

The pseudo dimension also generalizes the algebraic notion of the 
dimension of a vector space of real-valued functions (Dudley, 1978). 

THEOREM 4 (Dudley). Let F be a d-dimensional vector space of 
functions from a set Z into ‘3. Then dim,(F) = d. 

Proof: Fix any sequence i= (z,, .,., zd+ i) of points in Z. For anyfE F 
let y(f) = (f (zl J1 . . . . f b+, )). Then Y is a linear mapping from F into 
‘!Rdf i, and the image of Y is F,,. Since F is a vector space of dimension 
d, this implies that F,, is a subspace of !I?‘+ ’ of dimension at most d. Hence 
by Lemma 2, F,, is not full. This implies dim,(F) < d. On the other hand, 
if F is a d-dimensional vector space of real-valued functions on Z, then 
there exists a sequence 5’ of d points in Z such that FIT= W’. Hence Z is 
shattered, implying that dim,(F) 2 d. m 

There are many other ways that the VC dimension can be generalized to 
real-valued functions (Natarajan, 1989a, 1989b; Pollard, 1984; Vapnik, 
1989; Dudley, 1987). Dudley (1987) compares several such generalizations, 
albeit in a different context. The generalization we have proposed here, the 
pseudo dimension, is a minor variant of the notion used by Pollard (1984) 
to define classes of real-valued functions of polynomial discrimination, 
called VC-subgraph classes in Dudley (1987). The pseudo dimension will 
be used in the form defined above in Pollard’s new book (Pollard, 1990). 

The pseudo dimension has a few invariance properties that are useful 
(see Pollard, 1990, for further results of this type). 

THEOREM 5. Let F be a family of functions from Z into ‘3. Fix any 
function g from Z into ‘% and let G = {g + f: f E F}. Let I be a real interval 
(possibly all of ‘93) such that every function in F takes values only in I. 
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Fix any nondecreasing (resp. nonincreasing) function h: I-+ ‘93 and let 
H= {hof: f EF}, where 0 indicates function composition. Then 

1 (Wenocur and Dudley, 1981). dim,(G) = dim,(F) and 

2 (Nolan and Pollard, 1987; Dudley, 1987). dim,(H) <dim,(F), with 
equality if h is continuous and strictly increasing (resp. continuous and 
strictly decreasing). 

Proof Part (1) follows directly from the fact that the notion of a set of 
points being full is invariant under translation. For part (2) it suffices to 
prove the results for h nondecreasing and h continuous and strictly increas- 
ing. Let Z= (z,, . . . . zd) be such that H,? is full, i.e., such that HI,-.? inter- 
sects all 2d orthants of !Rd for some vector x’ = (x1, . . . . xd) in ‘31d. Then for 
every Boolean vector 6~ (0, 1 }” there exists a function fi;E F such that for 
every i, 16 i < d, we have h ofG(zi) > x, if and only if the ith bit of 6 is 1. 
For each i, 1 d i < d, let 

and 

U; = mini f,-(zi): the ith bit of 6is 1) 

1, = max{ f,-(z,): the ith bit of 6is O}. 

Since h is nondecreasing, we have ui > 1; for each i. Let ri = (ui -I- 1,)/2 for 
each i and r’= (rlr . . . . rd). Let T= {fc: 6~ (0, l}d}. Then clearly T,,--r’ 
intersects every orthant of ‘91d, so T,: is full. Since TC F, this implies that 
F,? is full, and hence dim,(H) <dim,(F). Equality follows when h is 
continuous and strictly increasing since we obtain the class F from H by 
composing with h- ‘. 1 

By putting a probability measure on Z, we can view a class F of real- 
valued functions on Z as a pseudo metric space. The distance between two 
functions is the integral of the absolute value of their difference, i.e., the L’ 
distance, relative to the given measure. To make this work, we need to 
make some assumptions about the integrability of the functions in F under 
the given measure. Since we will be concerned only with families of 
functions taking values in a bounded range in this paper, this will cause no 
problems for us. For convenience, we choose this range to be [0, M]. For 
a more general treatment, see Pollard (1984) and Dudley (1984). 

DEFINITION 4. Let F be a class of functions from Z into [0, M], where 
M > 0, and let P be a probability measure on Z. Then dLICpj is the pseudo 
metric on F defined by 

dLl,p)(L g) = Wlf - gl) = s, If(z) - g(z)1 Wz) for all J gg F. 
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The notions of s-cover and metric dimension used in the previous section 
can be generalized to arbitrary pseudo metric spaces. This generalization is 
given in Section 9.1 of the Appendix. In the remainder of the paper we use 
the concepts and notation given there without further special reference. 

Using techniques that go back to Dudley (1978), Pollard has obtained a 
beautiful theorem bounding the metric dimension of (F, dLlcpj) by dim,(F) 
for any probability measure P on 2. Actually this result is much stronger 
in that it gives explicit bounds on the packing number for F using d,~,~, 
balls of radius e. Since packing numbers are closely related to covering 
numbers (Theorem 12 in Section 9.1) these bounds can then be used with 
Theorem 2 to obtain uniform convergence results for empirical estimates of 
functions in F. We now state and prove a version of Pollard’s result 
(Pollard, 1984, Lemma 25, p. 27) for the special case when F is a class of 
functions taking values in the interval CO, M] with somewhat better 
bounds on the packing numbers. 

THEOREM 6 (Pollard). Let F be a family of functions from a set Z into 
[O, M], where dim,(F) = d for some 1 < d< CD. Let P be a probability 
measure on Z. Then for all 0 < E < M, 

A(&, F, b,,,) < 2 (?y!!ln~)d. 

The proof we give uses essentially the same techniques as Pollard’s, with 
some minor modifications. It relies on a few lemmas, which we give now. 
The first, which we give without proof, was discovered independently by a 
number of people (see Assouad, 1983) including Vapnik and Chervonenkis 
(1971), but is most often attributed to Sauer (1972) in the computer science 
literature. 

LEMMA 3 (Sauer). Let F be a class of functions from S= (1, 2, . . . . m> 
into (0, l} with IFI > 1 and let d be the length of the longest sequence of 
points Z from S such that F,,= (0, 1 }“. ThenI 

IFI < i (y) 6 (em/d)‘, 
i=O 

where e is the base of the natural logarithm. 1 

I2 See e.g. Dudley (1984, Proposition 2.2.9) or Blumer et al. (1989, Appendix), for a proof > 9 
of the second inequality. Note also that Vapnik and Chervonenkis (1971) actually contains a 
slightly weaker result. 
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In the next lemma we bound the packing numbers of (F, d,!,,,) in terms 
of the expected number of orthants intersected by a random translation of 
a random restriction of F. This is the key lemma of the proof. 

LEMMA 4. Let F he a family of functions from a set Z into [0, M] and 
let P be a probability measure on Z. Let 7= (r,, . . . . r,) be a random vector 
in [0, Ml”, where each ri is drawn independently at random from the 
untform distribution on [0, M]. Let z’= (z,, . . . . z,,,) be a random vector in 
Z”, where each zi is drawn independently at random from P. Then for all 
&>O 

E(lsign(F,,-- ?)I) >,M(E, F, d,l(,,)(l -J%‘(E, F, d,+,,) ep”“‘M), 

Proof: For allfEF wedenote (f(z,), . . . . f(z,)) byf,,. Choose E>O. Let 
G be an s-separated subset of F (w.r.t. dLLCPj), with (GI = &(E, F, d,q,,). 
Then 

E( Isign(FIZ- ?)I) 

bE(lsign(G,,-?)I) 

aE(I(f~G:sign(f,~-r’)#sign(gIl--) forall gEG,g#f}l) 

=IxGPr(sign(f,,-?)~sign(g,,-i) forall gEGg+f) 

=f;G (1 -Pr(3gEG, g+f: sign(f,r-r’)=sign(g,l-?))) 
E 

2 1 (l-ICI max 
ftG 

neC E+/Pr(sign(f,i-?)=sign(g,,-?))). 

Let f and g be distinct functions in G. Since G is e-separated, 

s 
If(z) - &)I dP(z) > E. 

Z 

In addition, the range off and g is [0, M]. Hence if zi is drawn at random 
from P and ri is drawn at random from the uniform distribution on 
[0, M], then the probability that ri lies between f(zi) and g(zi) is at least 
s/M. And sign(f,,- 7) = sign(g,,- 7) only if this fails to occur for each i, 
1 <i<m. Thus 

Pr(sign(f,,-r’)=sign(g,,-J))< 1-t <e-Em’M. 
( > 

m 
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Since this holds for every distinct f and g in G, combining this with the 
inequality above, we have 

E(lsign(F,,-?))o> (G/(1- (G~c”“‘~). 

Since IGI = J%!(E, F, d,~~,,), this gives the result. m 

Proof of Theorem 6. Since dim,(F) = d, it follows from Sauer’s lemma 
that )sign(F,,-7))) ~(em/d)~ for all mad, 2~2” and 7~[0,M]‘“. Hence 
the above lemma implies that 

(em/d)da J.@(E, F, dLICpJ)( 1 - .A!(E, F, dLqp,) e-sm’M) (4) 

for all probability measures P on Z and m 2 d. It is easily verified that if 

then the upper bound given in Theorem 6 follows trivially using the fact 
that &GM. Thus we may assume that (M/E) ln(2A!(E, F, dLICpj)) ad. 
Hence, if m > (M/E) ln(2&(s, F, d,,,,,)), then m 2 d and 

Thus from (4) we obtain 

eM ln(2&‘(&, F, dtlCPj)) d 1 
Ed 

a 2 Jt’(&, F, dp(pJ. 

With some simple calculations, this gives the bound of Theorem 6. 1 

Using our results on uniform convergence from Sections 3.2 and 9.4, we 
can now show the following. 

THEOREM 7. Let F be a permissible family of functions from a set Z into 
[O, M] with dim,(F) = d f or some 1 <d<oo. Assume mB1, O<v<88M, 
and 0 -C a c 1. Let Z be generated by m independent draws according to any 
distribution on Z. Then 

d 
e - u2wn/8M 

Moreover, for m 3 (8M/a2v)(2dln(8eM/av) + ln(8/6)) this probability is at 
most 6. 
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ProoJ Let E = crv/g. Since c1< 1 and v 6 8M, E< M. For any sequence z’ 
of points in Z there is a trivial isometry between (F,?, d,,) and (F, d,+,,,), 
where P, is the empirical measure induced by ?, in which each set has 
measure equal to the fraction of the points in Z it contains. Thus by 
Theorem 12 of Section 9.1 and Theorem 6. we have 

for all 2~ Zzm. Hence the given probability is at most 

by Theorem 3. 
For the second result, setting the bound above equal to 6 and solving for 

m gives 

16eM 
- 

CIV 

It is easily verified that ln(a In a) < 2 ln(a/2) when a >/ 5, and from this the 
bound given in the second result follows. 1 

COROLLARY 2. Under the same assumptions as above, for all 0 < E < M, 

WfEF: &(f,-E(f)1 >~)<8 

Moreover, for m > (64M2/E2)(2d ln( 16eM/s) + ln(8/6)) this probability is at 
most 6. 

Proof: This follows directly from the above result by setting v = 2M, 
c1= E/~M, and using property (3) of the d, metric, as in the proof of 
Corollary 1 in Section 3.2. u 

5. SOME APPLICATIONS OF PSEUDO DIMENSION IN LEARNING 

We now look at how the theoretical results obtained in the previous two 
sections can be applied to certain types of learning problems. Suppose that 
we have a basic learning problem defined by X, Y, A, X’, 9, and 9, where 
9 is the family of L,, y regret functions for an underlying loss function I, 
as in Section 2. As before, let Z = Xx Y, I,,: Z -+ [0, M] be defined by 
l,(x, y) = I( y, h(s)) for all h E %‘, and I, = { 1,: h E X}. In this section we 
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show how to obtain sample complexity bounds on algorithms for this basic 
learning problem using Theorem 7 above. 

To obtain these bounds, we need bounds on dim,(l,). In this section we 
look at some useful tricks for computing dim,(Z*) in the important case 
A c ‘$3, i.e., when each decision is represented by a real number. In the 
following section we discuss more general decision spaces. 

When A c ‘93, the functions in 2 are themselves real-valued, so we can 
talk about the pseudo dimension of X itself, without reference to any 
particular loss function. What makes this useful is that in many important 
cases the pseudo dimension of 2 is the same as the pseudo dimension of 
1,. Thus we can factor out the effects of the loss function in deriving our 
sample size bounds, and concentrate on the pseudo dimension of the 
decision rule space 2. 

DEFINITION 5. Let 1: Y x A + ‘9I be a loss function, where A c ‘9I and Y 
is an arbitrary set. For each y E Y define the function f,, : A -+ ‘3 by letting 
[J(a) = /( y, a) for each a E A; i.e., fV is the restriction of 1 obtained by fixing 
its argument to y. We say that 1 is monotone over A if for every y E Y, either 
fV is strictly increasing on A, orfV is strictly decreasing on A. Thus{,. may 
be increasing for some y E Y and decreasing for others. 

LEMMA 5. If A c ‘93 and I is a loss function on A x Y that is monotone 
ouer A, then dim,(l,) = dim,(X). 

Proof: Suppose that x’= (x,, . . . . xd) is shattered by 2, where X,E X, 
1 < i6 d. Then there is some real vector ?= (rl, . . . . rd) such that #,.?-r’ 
intersects all 2d orthants of ‘3’. Hence for every Boolean vector 6~ (0, 1 }” 
there exists a function h, E X such that for every i, 1 < i< d, we have 
hF(x,)>rj if and only if the ith bit of 6’ is 1. Fix an outcome YE Y. 
Let Z=( z,, . . . . zd), where zr = (xi, y) for all i, 1 ,< i < d. Note that if& is 
strictly increasing, then for any h E Z? and 1 < i 6 d, h(xi) > rio lh(.zi) = 
I( y, h(xi)) =f,.(h(xi)) >fv(ri). Hence, for every Boolean vector 8~ (0, 1 }” 
there exists a function hGE J’? such that for every i, 1 <i< d, we have 
/,,,(z~) >f,,(ri) if and only if the ith bit of b’ is 1. A similar result holds iff,, 
is strictly decreasing. Thus ? is shattered by I,. It follows that dim,(Z,) 2 
dim,( 2). 

For the other direction, assume Z= (z~, . . . . zd) is shattered by I,, where 
zi = (xi, yi) for all i, 1 d i < d. We show that .?= (x1, . . . . xd) is shattered by 
Z. Since z’ is shattered by I,, there is some real vector r’= (r,, ..,, r,,) such 
that for every Boolean vector 6~ {O, 1 }” there exists a function h6E SF such 
that for every i, 1 < i < d, we have Z,,(Z,) > ri if and only if the ith bit of 6 
is 1. Let A0 = {h,(xi): 1 < id d and .6~ (0, 1 }“}. For each outcome y E Y 
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define the function g, : % -+ A, as follows. If f; is increasing then g,(r) = 
max{a~Ao:fb,(a)<r} and if fV is decreasing then g,,(r) = 
max(aeA,:f,.(a)>r}. Then for each i, 1 <i<d, we either have 

1. for all hE:X, Ih(z,)=f,,,(h(xi))>r,~h(x,)> g,,(r,) or 

2. for all h E: X, I,(zi) =f,,(h(x,)) > ri-= /2(x,) f g,,,(ri). 

Hence, for every Boolean vector go (0, l}” there exists a function /Z~E X 
such that for every i, 1 4 i 6 d, we have h’,(x,) > g,,(ri) if and only if the ith 
bit of b’ is 1. (To see this, let c’ be the Boolean vector derived from b’ by 
complementing the bit in each position i for which &, is decreasing, and 
then let h$= h,.) Thus x’= (x,, . . . . .x~) is shattered by &‘. It follows that 
dim,(X) adim,( and combined with the above inequality, this gives 
the result. i 

Combined with Theorem 7, this gives the following result on the uniform 
convergence of empirical risk estimates for the basic learning problem. 
Here and below we use the notation fh.,(Z) and rh,[(P) introduced in 
Section 2 for the empirical risk estimate and true risk of a decision rule h, 
respectively. 

THEOREM 8. Assume the decision space A c 93, the loss function I is 
monotone over A and bounded between 0 and M, the decision rule space J%? 
is such that I, is permissible, and 1 d d= dim,(S) < 00. Assume m 3 1, 
0 < v < 8M, and 0 -CO! < 1. Let P be any probability distribution on 2. Let z’ 
be generated by m independent draws from 2 according to P. Then 

d 
PrF E 2: dv(ih,AZ), r,,,,(P)) > a) < 8 

16eM ln 16eM 
CI\, __ e - z2vm/8M 

UV > 

Moreover, for m 2 (8M/a2v)(2d ln(8eM/uv) + ln(8/6)) this probability is at 
most 6. 

Proof. By Lemma 5, dim,(l,) =dim,(&‘) in this case. Thus, since 
PA,!(Z) = ez(l,,) and rh,!(P) = E(I,), the result follows directly from 
Theorem 7. 1 

When its conditions are satisfied, this theorem, combined with Lemma 1 
from Section 2.5, gives us a means of bounding in terms of dim,(&‘) the 
sample complexity m(cr, v, 6) of any algorithm that solves the basic learning 
problem by returning (with high probability) a decision rule with near 
minimal empirical risk on the training sample. The resulting bound is 

dim,(X) log g + log f . (5) 



GENERALIZATIONS OF THE PAC MODEL 117 

This is similar to the sample complexity 

m(u, v, d)=O $ loglX”J +logi 
( ( )I 

that can be obtained by using Theorem 1, when 9 (and hence I,) is finite. 
The term dim,(X) log(M/ctv) replaces the term log IX”). In particular, for 
the “PAC settings” u = i and v = E we get the sample complexity 

dim,(X)logf+logi , (6) 

in place of the sample complexity 

rn(E,6)=0 $ log)%%“) +log; 
( ( )I 

derived from Theorem 1. Moreover, these bounds are distribution-inde- 
pendent, so L? can be taken to be the class of all probability distributions 
on Z. 

We now give several examples to illustrate the use of this theorem. First, 
consider the standard PAC model in which the outcome space Y and the 
decision space A are both (0, 1). In this case any loss function such that 
~‘(0, 1) # 1(0,0) and Z(1, 1) # I( 1,O) is monotone over A, and in particular, 
the standard discrete loss function, I( y, a) = 1 if y = a, else 1( y, a) = 0, is 
monotone. Clearly M= 1 in this case. Thus from Eq. (6) above we get a 
sample complexity bound of 

dim,(X)logi+logi . 

As mentioned in the previous section, dim,(X) is the same as the 
Vapnik-Chervonenkis dimension of H in this case; hence this bound is, up 
to constants, the same as that given in Theorem 2.1 of Blumer et al. (1989). 
A number of applications of this result are outlined in Blumer ef al. (1989). 
Further applications, specifically for learning problems that have been 
studied recently in the mainstream artilical intelligence work, are given in 
Haussler (1988, 1989). 

For our second example, consider the case where the outcome space Y 
is (0, 1 } but the decision space A is [0, 11. Assume that the loss function 
is 1( y, a) = la - ylq for some q > 0. This case was examined with q = 2 by 
Kearns and Schapire (1990) in their investigation into the learnability of 
p-concepts. They showed that dim,(l#) = dim,(X) in this case. Since the 
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loss I is monotone in A for all q > 0, Lemma 5 shows that this result holds 
for other values of q as well. Hence the conditions of Theorem 8 are met. 
Some applications are given in Kearns and Schapire (1990). (It should be 
noted that it is important that A = [0, l] in this case. The result does not 
hold in general for larger A.) 

For our third example, consider the problem of logistic regression, as 
described in Section 1.1.3. In the simplest case the outcome space again has 
only two values, denoted y, and y,, where yi indicates that some event has 
taken place and ~1~ indicates that it has not, and an action a represents an 
estimate of the log odds ratio ln(P( y,)/P( uZ)), where the probability P is 
conditioned on the observed instance X. Here A = % and the log likelihood 
loss function is the logistic loss function, defined by I( ~1~) a) = ln( 1 + ea) - a 
and I( .vz, a) = ln( 1 + eU). Again, it is easily verified that I is monotone in A. 
In logistic regression the standard assumption is that the instance space X 
is contained in ‘%’ for some n B 1 and X is contained in the family of all 
linear functions on X (see, e.g., McCullagh and Nelder (1989)). In this case, 
dim,(X) <n + 1 by Theorem 4. By restricting A to a bounded range, we 
can then apply Theorem 8 to obtain sample complexity bounds that are 
linear in n. 

As a last example, consider the problem of density estimation, as 
described in Section 1.1.4. Here there is only one outcome in Y, A c ‘93 +, 
and 1( y, a) = I(u) = -log a. Thus clearly I is monotone in A. Thus we can 
apply Theorem 8 to the problem of density estimation as well, whenever 
the family of densities 2 is uniformly bounded (away from zero) and has 
finite pseudo dimension. 

6. CAPACITY AND METRIC DIMENSION OF FUNCTION CLASSES 

In Sections 4 and 5 we showed how the pseudo dimension can be used to 
obtain distribution independent bounds on the random covering numbers 
needed for Theorem 2, thereby obtaining bounds on the sample size needed 
for uniform convergence and learning results. In this section we develop an 
alternate way of obtaining distribution independent bounds on random 
covering numbers. This method can sometimes be used in conjunction 
with the method given in the previous sections to extend that method to 
cover cases where the decision space A is not contained in ‘R We will 
demonstrate this in our analysis of the sample size needed for learning in 
feedforward neural networks in the following section. 

The key idea is to introduce a pseudo metric (see Section 9.1) on the 
decision space A. The distance between two actions is the maximum 
difference in loss for these actions, over all possible outcomes. 
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DEFINITION 6. For every loss function I: Y x A --, [0, M], by p, we 
denote the pseudo metric on A defined by p,(a, b) = supyE ,,ll( y, a) - I( y, b)l 
for all a, b E A. 

Note that (A, p,) is a bounded pseudo metric space: no two actions in 
A are more than A4 apart. 

Since decision rules in 2 map from the instance space X into A, the 
pseudo metric pI on A can be used to induce a pseudo metric on 2 in 
which two decision rules differ only to the extent that the actions that they 
prescribe differ with respect to p,. There are several ways to do this. The 
easiest is to use an L” function distance on 2, defining the distance 
between decision rules f and g as the supremum of p,(f(x), g(x)) over all 
x E X. This works, and is a useful method of obtaining uniform convergence 
and learning results (see related techniques used in White, 1990a). 
However, as we will see, the crucial issue is the size of the smallest s-cover 
of the resulting pseudo metric space 8. In some cases we can get smaller 
covers, and hence better results, by using an L’ function distance instead. 
Since the L’ distance is never more than the L” distance, the results are 
never worse. Thus we present this more powerful method here. 

DEFINITION 7. Let 2 be a family of functions from a set X into a 
bounded pseudo metric space (A, p). Let P be a probability measure on X. 
Then dLl,p.,j is the pseudo metric on 2 defined by 

d c,p,Jf, 8) = E(df(,~), g(x))) = j, M-x), g(x)) dP(x) 

for all f, g E 2’. For every E > 0 let 

WE, x, P) = sup(J’-(s, x”, 41~p,pJ} over all probability measures P on X. 

If J’-(~2 z”, dam) is infinite for some measure P, or if the set in this 
supremum is unbounded, then %?(E, #, p) = co. We ca1113 %(E, .Z, p) the 
capacity of 2. In analogy with the definition of metric dimension in 
Section 9.1, we define the upper metric dimension of 38 by 

dim( 2) = limsup log WE, 2, P) 
E-0 l%(l/&) ’ 

I3 The term merric entropy is often used for the quantities log .N(s, Z’, dL~,p,pj) and 
log %?(E, P, p) (Dudley, 1987; Quiroz, 1989). It is also used for an analogous, but fundamen- 
tally distinct, concept in the dynamical systems literature (e.g., Farmer, 1982). The term 

cupacify has also been used with many other related meanings (Mandelbrot, 1982; Vapnik, 
1982; Kolmogorov and Tihomirov, 1961; Farmer et al., 1983; Baum and Haussler, 1989). Our 

usage here is taken from Dudley (1984). 
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and the lower metric dimension, denoted by h(X)), is defined similarly 
using liminf. When dim(X) = d&(X)), then this quantity is denoted 
dim(H), and referred to simply as the metric dimension of X0. If @?(E, X, p) 
=cc for some E>O then dim(.Z)=r;o. 

We now show how bounds on the capacity of X lead to distribution- 
independent bounds on the rate of uniform convergence of empirical risk 
estimates for functions in X with respect to the loss function 1. As before, 
let Z = Xx Y, let P be a probability distribution on Z, and let I, be 
the family of functions on Z defined by f# = { 1,: h E 21, where 
I,(x, y) = I( y, h(x)). Let P,, be the marginal on X of the joint distribution 
P on Xx Y (see Section 1.5). 

LEMMA 6. For all E > 0, 

JUG 1x9 d,l& 6 JIG XP, 4~,~,X.P,~). 

Proof For every h E X let $(h) = l,,. Hence q maps from X onto I,. 
It suffices to show that \I/ is a contraction, i.e., that 

Let f and g be any two functions in 2”. Then 

d~~~&Kt-)~ ti(g)) = jz IVY, f(x)) - 4~9 g(x))1 dP(x, Y) 
6 s z ~,(f(x)> g(x)) @(xv Y) 
= f x P,WL g(x)) dP,xb) 

This gives the following theorem about distribution-independent uniform 
convergence of risk estimates for learning. 

THEOREM 9. Assume that the decision rule space # and the loss function 
1 are such that 1, is permissible. Let P be any probability distribution on 
Z=XxY.Assumethatm~1,v~0,andO~u~1.Letz’begeneratedbym 
independent draws from Z according to P. Then 

Pr(3hEH: d,(f,,(Z), rh,,(P))>cx)<4%‘(av/8, %“, p,)e-‘2”““gM. 

Proof: Let F = 1,. For any sequence z’ of points in Z there is a trivial 
isometry between (F,:, dL1) and (F, dLI,rI,), where P, is the empirical 
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measure induced by Z, in which each set has measure equal to the fraction 
of the points in Z it contains. Thus by Lemma 6 above, we have 

J-(E, F,,, dL1) = J-C&, F, dp,p,) ) < N(E> x”, d~qp~,~.~,)) 6 v(E, x, PI) 

for all ZE Z’“. Hence, setting E = crv/8, the given probability is at most 
4%‘(crv/8, &‘, pl) eP’2V~/sM by Theorem 3. 1 

In order to apply the above theorem, we need tools for bounding the 
capacity of various decision rule spaces. Along these lines, we close this 
section by proving two basic lemmas, one about the capacity of the free 
product of a set of function classes, and the other about the capacity of 
compositions of function classes. 

DEFINITION 8. Let (A,, pl), . . . . (Ak, pk) be bounded metric spaces. Let 
A=A,x ... x Ak and let p be the metric on A defined by 

P(i;, ‘) =i ,i Pj(U,, Uj) 
J=l 

for any u’= (u,, . . . . UJ and v’= (ul, . . . . uk)e A. For eachj, 1 <j<k, let 3 be 
a family of functions from X into Aj. The free product of X, through .& 
is the class of functions 

2 = ((fl, . . . . fk):f;Eq,l<j<k}, 

where (fi, . . . . fk): X+ A is the function defined by 

(fi, . ..v h&) = (fi(X), -*,fk(X))* 

LEMMA 7. rf%“, #l,..., Xk are defined as above then 

1. for any probability measure P on X and E > 0, 

fi J’?=E, q, 41fp,p,J G x(&y 2, &qp,p,) G fi JW, $7 dpcp,P,,k 
j=l j=l 

2. 
7 7 
dim(H) = Cf= 1 dlm(&$, and similarly for &I and dim, when the 

latter is defined. 

Proof We begin with the second inequality of (1). For each 1 <j< k 
let U, be an E-cover for 3. Let 

17~ fi uj= {(fit . . . ..fk).jjE Uj, l<j<k}. 
j=l 
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It s&ices to show that U is an c-cover for 3’“. Let g = (g,, . . . . gk) be any 

function in X. For each j, 1 d j 6 k, findf,E Ui such that dLICp,p,,(J;r gj) < E. 
Let f = (f,, . . . . fk). Then 

d ~.l,~,p)(f, g)=J,vi 2 4,(-f;(X), gj(x))dP(x) 
,= I 

=i j;, Jx Pj(f,(*x), g,(x)) dP(X) 

=i ,i d,l,,,,(f;, gj) 
/=I 

6 E. 

Hence U is an s-cover for S. 
The first inequality of (1) is verified similarly. For each 1 < j 6 k let I’, 

be a kc-separated subset of s$. Let V= fll=, I$ Let f = (f,, . . . . fk) and 
g = (811 ...> gk) be distinct functions in I/. Then 

d ~(p.p,(f, g) = $ ,i dLyP,p,,(fi g,) > E. 
,= I 

Hence V is an a-separated subset of H. It follows that 

The first inequality of (1) then follows using Theorem 12. 
From (1) we have 

fi Q’(2k&, ~$9 Pj) G @‘(E, 2, P) < fi %(E, q, pj). 
/=I j=l 

Part (2) follows easily from this. B 

DEFINITION 9. Let P be a probability measure on X and let f be a 
measurable function from X into Y. Then P, denotes the probability 
measure on Y induced by f; i.e., 

Pf(S) = P(f-‘(9) for all measurable SC Y. 

DEFINITION 10. Let f be a function from a metric space (X, p) into a 
metric space ( Y, 0). A Lipschitz bound on f is a real number b > 0 such that 
for all x, y E X, o( f(x), f(y)) G b&x, y). The Lipschitz bound on f is the 
smallest such 6. If 5 is a class of functions from (X, p) into (Y, a) then b 
is a uniform Lipschitz bound on 9 if b is Lipschitz bound on S for all f E 9;. 
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LEMMA 8. Let (X, , pl), . . . . (X, + , , pk + 1) be metric spaces, where (Xi, pi) 
is bounded, 2 6 j d k, and S$ be a class of functions with f: Xi --f Xi + , for all 
f E 3, 1~ j < k. Let bj be a uniform Lipschitz bound on .$ for all 2 Q j < k. 
Let Z denote the class of all functions from X, into X,, , defined by 
compositions of functions in the T’s; i.e., 

ST= (fkOfk&10 . . . Ofl:fiEq, 16 j<k}. 

1. For any E, Ed, . . . . Ed > 0 such that 

we have 

2. 
7 7 
dtm(2) < Cl=, dlm(%J, and similarly for &I and dim, when the 

latter is defined. 

Proof: Fix a probability measure P on X1. We define a tree-structured 
family of covers for the T’s by induction as follows. For the basis case, let 
U be a minimum-sized E1-cover for Z1 w.r.t. the measure P on X,; 
i.e., I Ul = J(&, , %, dLltp,p2j) and every function in & is L’( P, pz)- 
approximated to within E~ by some function in U. Now for each j, 2 <j < k, 
and for each sequence of functions fi, . . . . f,- 1, where f, E U, fi E U,, 

f3 E ur.Ji> *..5 h- 1 E uh ._..,. f/-2p let uh . . . . . . /,-, be a minimum-sized &j cover for 
S$ w.r.t. the L’ metric for the measure P,--,O~l;-zO ,_, 9f, on Xj and the metric 
P J+1 on X,+,. 

Next we define a cover V for 2 by composing functions in the covers 
for the 3’s. If k = 1 then V= U. Otherwise 

v= {fk”fk- lo ‘.’ of,:f~EU,f*EUfi,f~EU/,,/,,‘..,andfkEU/, (_.., r,-,>. 

Since x(&j, 8, dLl,, +,-2. ,.P,+,))~~(&j,~,p,+,) for all lQj<k and 
all fi, . . . . fj- Ir it is clkar’that Ikl < nr=, %(sj, 3, p,+ I). Hence it remains 
to show that V is an e-cover for 2. 

Suppose that g=gkOgk--10 ... og,EP. Find 

l fi E u such that dl~~p,p2~(fi, g,)<c,, 

l f2 E Uh such that dL~cP,,,P3j(f2, gJ G G, . . . . and 

l fkE Uh,sqh-, such that dLlcP,k-,,k- 2 ,,.pk+,)(fk’ gk)G&k. 

643/100/l-9 
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Let f =fkofkelo ... of, E V. It suffices to show that dllCp,pk+,)(f; g) 6~. 
We prove that for all h, 1 d h d k, 

d Lv,phr,dfh’J ... 

Since 

part (1) of the result follows. 
If h = 1 then the result follows directly from our definition off: Otherwise 

d ~‘(~,p~+,)(fh’ ‘.. ‘fi, gh” ‘.. ‘gl) 

= s Ph+l(fh’ “’ Ofi( g,o .‘. o g1(x)) de) 
Xl 

< s Ph+L(gh'fh--L 0 ... of,(x), ghogh-lo .I. og,(x))dP(x) 
XI 

+ Ph+l(fh’fh--Lo ‘.’ ‘fib), gh’fhL-1’ “’ of,(x))Wx) 
XI 

<b, 5 Ph(fh-1’ .‘. ‘fitx)? gh-1’ “. ogl(x))dp(x) 
Xl 

+ Ph+ I(fh(Y), gh(y)) dP,,m,,...,,(y) (by the LWhitz assumption) 

h-l 

< bh c 
,=I 

= i ( 
,=L 

fi +,. 
/=/+l 

To prove part (2), let ui = nf==, + 1 b, and set tzj = .z/kaj for 1 <j < k. By 
part (11, ~(~,~,Pk+I)~nik=,~(Ej'~,P,+,). Thus 

dim(S) = liy:rp 
lOg(~(E> x”, Pk + I )) 

h(l/E) > 

,( limsup 
( 

log(Il~= 1 g(Elkaj, $3 ~j+ 1)) 
lw( l/E) > 

lOg(w(&lkaj, $3 Pj+ 1)) 
lOg(l/E) > 
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= i: dim(T). 1 
i=l 

7. SAMPLE SIZE BOUNDS FOR LEARNING WITH MULTI-LAYER NEURAL NETS 

We now present some applications of the results of the previous section 
to learning with feedforward neural nets (see, e.g., Rumelhart and 
McClelland, 1986; Poggio and Girosi, 1989). The decision rule space L# 
represented by a feedforward neural net consists of a family of functions 
from an instance space Xc %” into a decision space A c ‘3’ for some k, 
n > 1. To apply Theorem 9 of the previous section, we need to obtain an 
upper bound on the capacity %(E, A?, p,) of such decision rule spaces for 
various loss functions 1. 

For many loss functions, the metric p, on A c Sk can be bounded 
in terms of the d,l metric; i.e., we can find a constant c, such that for 
all a’= (a,, .,., ak) and &=(b 1, . . . . bk) in A, p,(Z, &)G c,d,~(ii, 6) = 
(cl/k) Cf=, lai-- bil. In this case it is clear that %‘(E, X, pI) <@‘(E/C,, &, dL1). 
Thus our problem is reduced to obtaining an upper bound on the capacity 
WE/C,, 2, d,l). 

We now give a few examples to illustrate this reduction. First consider 
the common case in which the outcome space Y is also contained in ‘$3“; 
e.g., we receive explicit feedback on each coordinate of our action 
ZE A c !RZk. This occurs when each coordinate a, of the action a’ is a predic- 
tion of the corresponding coordinate of the outcome 9. Here the loss func- 
tion I may itself be a metric on ‘Sk which measures the distance between 
the predicted vector and the actual outcome vector. When 1 is a metric, we 
have for any actions ii, 8~ A 

p,(ii, F) = sup IZ( p, a’) - I( jJ, S)I < I(& 9) 
.?1’E Y 

by the triangle inequality for 1. Thus if the metric I is bounded 
with respect to the d,l metric, i.e., /(a g) < c,d,l(ii, 8) for all i;, 6~ A, then 
we have p,(ii, 8) < cl d,l(Z, 6). For example, if 1(j, a’) = dL@, ii) = 
((l/k) Cf=, (vi- Ui)2)“2 then we may take c,= 1, and similarly for the 
other d,, metrics, for q > 1. 

Note that the above trick does not apply to the mean squared loss 
I( j, a’) = (l/k) Cf=, ( JJ; - ai)’ since this loss does not satisfy the triangle 
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inequality. However, in this case it is easy to show by direct calculation 
that if the outcome space Y is bounded, e.g., YC [0, Ml“, then 
p,(& g) < 2Md,j(ii, g), and hence we may take c, = 2M. 

For our final example, consider the case when Y = {O, 1 }k, A c [0, 1 lk, 
and 1 is the cross entropy loss, 

l(j,a’)= -i (Y~lnU,+(l-Yi)ln(l-ai)). 
i= I 

As discussed in Section 1.1.3, this is the log likelihood loss for the regres- 
sion problem in which the action a’ represents a vector of probabilities for 
independent Bernoulli variables, and the outcome y’ gives the observed 
values of these variables. This loss is bounded if we restrict the probabilities 
in a’ to be between B and 1 - B for some 0 < B 6 f. In this case 

)I 

<f ,i la,-b;l. 
r=l 

The latter inequality follows from the fact that for x, y > 0, 

I I In x =ln 
max(x, .v) ~ max(x, Y) _ 1 = Ix - YI 

Y min(x, y) min(x, y) min(x, y)’ 

Thus in this case we may take c,= 2k/B. 
We now turn to the task of obtaining an upper bound on the capacity 

%?(E, Z, dL1) when the decision rules in 2 map into a decision space 
A c ‘%‘, and in particular, when these decision rules are represented by 
neural networks. When k = 1, i.e., the neural net has only one output, 
the decision rule space X is a family of real-valued functions and 
d,,(a, b) = Ia - bl for a, b EA. In this case we can apply the methods and 
results of Section 4. We must first find an upper bound on dim,(Z)), the 
pseudo dimension of 2”. Then, when A is bounded, from the bound on 
dim,(X) we get a bound on the capacity ‘%‘(E, 2, dLl) using Theorem 6. 
This also gives a bound on the metric dimension of 2. 

THEOREM 10. Let 2 be a family of functions from X into A = [0, M]. 
Assume dim,(X) = dfor some 1 <d-c 00. 
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1. For allO<E<M, 

2. T dim(Z) = dim.(X). 

Proof: Let P be any probability measure on X. Then by Theorems 12 
and 6 in Sections 9.1 and 4, 

(Theorem 6 is applied with Z= X and F = 2.) This gives (l), and (2) 
follows easily from (1). 1 

In the general case, where A c !Xik for k > 1, we can apply the methods 
from the previous section, in addition to the pseudo dimension methods 
from Section 4, to obtain bounds on V(E, X, d,,). We illustrate this for the 
case where 2 is the class of decision rules represented by a feedforward 
neural network. 

A feedforward neural network is defined as a directed acyclic graph in 
which the incoming edges to each node (or unit) are ordered and each 
incoming edge can carry a real number representing the activation on that 
edge. We will assume that all activations are restricted to the interval 
Cc,, cl] for some constants cO < ci. The units are divided into input units, 
which have no incoming edges from other units and serve as input ports for 
the network (their activations are determined by these external inputs), and 
computation units, which have incoming edges from other units and com- 
pute an activation based on the activations on these incoming edges. After 
an activation has been determined, this activation is placed on the outgo- 
ing edges of the unit. Computation units with no outgoing edges are called 
output units and serve as output ports for the network. Computation units 
that are not output units are called hidden units. The network as a whole 
computes a function that maps from vectors of activation values in its 
input units to vectors of activation values in its output units by composing 
the functions computed by its computation units in the obvious way. 

The action of a computation unit with n incoming edges can be specified 
by a function f from [c,, c,]“.into [c,, c,], where f(Z) is the resulting 
activation of the unit when the activations of its incoming edges are given 
by the vector X~E [c,, clln. In the nets we consider, the function f is defined 
by 
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where the M;‘S are adjustable real weights, 0 is an adjustable real bias, 
il, . . . . #k are fixed real-valued functions which we call the input transfor- 
mers, p: ‘Sk + ‘% is a fixed function which we call the global modifier, and 
r~: $3 -+ [c,, c, ] is a fixed non-increasing or non-decreasing function which 
we call the squashing function. Different units can have different modifiers, 
transformers, and squashing functions. We say that the function f com- 
puted by a given computation unit with n incoming edges has Lipschitz 
bound b if for any Z, ,?E [c,, c,]“, If(i)-f(y’)[ abd,l(l, 9). 

We give a few examples to illustrate the flexibility of this model at the 
level of the individual computation unit. First assume that k = n, i.e., the 
number of input transformers is the same as the number of inputs, and that 
each input transformer simply extracts a component of the input, i.e., 
4ji(x')=x,, 1 d j< n. In this case, which is the standard case for most 
neural net research, the overall input transformation is just the identity 
map and can be ignored. In this standard case, if the global modifier p = 0 
we get what is known as a quasi-linear unit (Rumelhart and McClelland, 
1986): 

In the standard case, if ~(2) = C:=, xy we get a unit that computes a 
function of the form 

f(n‘)=O(@+ i (X,-L7j)2). 
,=I 

where a, = -u>/2 and 0’ = 8 - I,“=, a:. This is similar to what is called a 
radial basis unit in the neural net literature (Poggio and Girosi, 1989; 
Moody and Darken, 1989). 

Now assume that k = n but the input transformers take logs of the 
components of the inputs; i.e., cb,(x’) = log xj. (Here we assume c,>O.) 
Let p = 0 and change the squashing function c to g’, where a’(x) = a(e-‘). 
Then 

f(P)=d(e+ i wjlogxj)=~(~~~lx:,. 
/=I 

giving what is commonly known as a product unit (Durbin and Rumelhart, 
1989). 

We define a feedforward architecture as a feedforward net with 
unspecified weights and biases; i.e., each computation unit has a fixed 
global modifier, a fixed squashing function and fixed input transformers, 
but it has variable weights and a variable bias. We say a unit is at depth 
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j in an architecture if the longest (directed) path from an input unit to that 
unit has j edges. Thus all input units are at depth 0, all computation units 
that have incoming edges only from input units are at depth 1, all 
computation units that have incoming edges only from input units and 
computation units at depth 1 are at depth 2, etc. The depth of the architec- 
ture is the depth of the deepest unit in it. 

We can bound the capacity of the decision rule space represented by a 
feedforward architecture as follows. 

THEOREM 11. Let d be a feedforward architecture as above with n > 1 
input units, k > 1 output units, and depth d > 1. Let W be the total number 
of adjustable weights and biases in &. Assume bj 3 1 for 2 < j < d, and let X 
be all functions from Cc,,, cl]” into [c,, cllk representable on SQ by setting 
the adjustable weights and biases such that for all j, 2 < j < d, the average of 
the Lipschitz bounds of the functions computed by computation units at depth 
j is at most bj. Then for all 0 -c E Q c2 - cl, 

v(E, 2, dc) < 2e(c,-c,)dn;=,b, *w 
E 1.’ 

Proof: For each j, 0 <j < d, let nj be the number of units at depth j 
in the architecture &‘. For each j, 0 < j < d- 1, let Ii = x{=, nj, and let 
l,=n,=k. For each j, 1 <j<d+ 1, let X,= [c,, c,]b-‘. Then for each j, 
1~ j< d, we can define the family q of functions from Xj into X,+ 1 in the 
following manner. 

First assume j < d. Let ul, . . . . u,, be an enumeration of the computation 
units at depth j and fi, . . . . fn, be functions such that f. can be represented 
by ui, 1 6 i < nj, and the average Lipschitz bound on the fis is at most bj. 
Let h, be the free product of fi, . . . . f, and lj-l copies of the identity func- 
tion on [cl, CJ Thus hi: Xj + Xj+ 1. The function hi represents a mapping 
from the sequence of all activations of units at depth at most j- 1 to the 
sequence of all activations of units at depth at most j, where the activations 
at depth at most j- 1 are unaltered, and the new activations, i.e., those at 
depth j, are calculated by f,, . . . . f”,. The family 3 consists of all functions 
h, obtained in this manner, by varying the weights and biases in the units 
UI 3 *.., u,, at depth j in such a manner that the Lipschitz constraint is 
satisfied. 

When j= d, no subsequent calculations will be performed so we no 
longer need to preserve the activations of shallower units. Hence, we omit 
the identity function components in each hdE &. Otherwise the definition 
of & is the same as that for J$, where j < d. 

It is clear that the class 2 in the statement of the theorem can be 
represented as the class of compositions of functions from classes 
2 ,, . . . . X& Since the identity function has Lipschitz bound 1 d bi, the 
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average Lipschitz bound on the components of each function hjE S$ is 
at most 6,. It is easily verified that a free product function is Lipschitz 
bounded by the average of the Lipschitz bounds on its component 
functions. Hence by assumption, 6, is a uniform Lipschitz bound on 3, 
2 6 jdd. For each j, 1 d j<d, let aj= n;‘_,+, b, and Ed= z/da.i. Since 
E<C2-C, and a, b 1, sj< c2 - cl. Let pi be the d,l metric on X,, 
l< j<d+ 1. Then by Lemma 8, part (1), 

For each j, 3 is contained in the free product of 1, function classes. Each 
class 9 in this product is either the trivial class containing only the identity 
function, or is a finite dimensional vector space of real-valued functions, 
summed with a fixed modifier and then composed with a non-increasing or 
non-decreasing squashing function. In the latter case, the dimension N of 
this vector space is the number of free parameters associated with the 
corresponding computation unit, i.e., the number of weights plus one (for 
the adjustable bias). Hence by Theorems 4 and 5 in Section 4, the pseudo 
dimension dim,(g) 6 N. Thus by Theorem 10 above, 

%?(E~, F-, dL1) < 2 24c2-c,)In24c2-clJ 

E.i Ej 

since 2 In x < x and N> 1. Since the capacity of a class with only one 
function is 1, it follows from Lemma 7 part (1) that 

where Wj is the total number of weights and biases of all computation 
nodes at depth j. Multiplying these bounds over all j, it follows that 

6 24c2-cl)dFIj=,b, 
E 

COROLLARY 3. Let n, k, X, W, d, and b,, . . . . b, be as in the previous 
theorem. Let X be the instance space [c,, c21n, let A be the decision space 
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[cl, c,lk, and let Y be any outcome space. Let 1: Yx A + [0, M] be a loss 
function and let c, be a constant such that p,(ii, 6) 6 c, d,l(ii, 6) for all 
ii, 6~ A. Let m > 1, 0 < v < 8(c, - c,), 0 < a < 1, and let P be any probability 
distribution on Z= Xx Y. Let z’ be generated by m independent random 
draws from Z according to P. 

1. Then 

~4 c,l&(c2-Cl)dn;‘=2b’ 
e- x%w~/~M 

CIV 

2. Assume that for each computation unit at depth 2 and above the 
number of weights is at most W,,,, no weight is allowed to have absolute 
value greater than fl, the input transformers are identity functions, the global 
modifier has Lipschitz bound at most r, and the squashing function has 
Lipschitz bound at most s, where s(p W,,, + r) > 1. Then for any 0 < 6 < 1, 
the probability in (1) is less than 6 for sample size 

m=O 2 (CC a: w log c,(c2-c,) av + d h&W Wmax 

Proof: Let E = crv/8 < c2 - ci . It can be verified that 1, is permissible for 
the decision rule space 2. Hence, using Theorem 9 and Theorem 11, 

Pr(3f E *: d,@J3, r,,(P)) > a) 

< 4~(av/8,~, p,) e-x2vm’gM 

d 4V(av/8c,, J?, dLL) e-a2vmi8M 

64 
c~164c2-cl)dIX’~2bb, 

av 

For the second bound, it is readily verified that the L’ Lipschitz bound 
for a linear function defined by W,,, weights and a bias is no more than 
W max times the largest absolute value of any weight. Furthermore, the 
Lipschitz bound for the sum of two functions is no more than the sum of 
the Lipschitz bounds on the individual functions, and the Lipschitz bound 
for the composition of two functions is no more than the product of the 
Lipschitz bounds on the individual functions. Thus if the input transfor- 
mers are identity functions, the global modifier and squashing function 
have Lipschitz bounds r and s respectively and no weight is allowed to 
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have absolute value greater than B, then the Lipschitz bound for a com- 
putation unit is at most s(/? W,,, + r). If this holds for all units at depth 2 
and above, may take b,= s(j3 W,,, + r) for all j> 2 in the first bound. 
Solving for m, this gives the order-of-magnitude estimate of the second 
bound. 1 

We give the constants in the upper bound of part (1) of the above 
theorem only to show that they are not outlandishly large. We do not 
mean to suggest that the bound is tight. At present we cannot even verify 
that the asymptotic bound of part (2) is tight. In particular, we cannot 
show that the dependence on the Lipschitz bounds is necessary. Evidence 
that it may not be necessary comes from the analysis of the case where the 
squashing function r~ is a sharp threshold function, i.e., a(x) =sign(x). 
Corollary 3 does not apply in this case, because the jump in r~ prevents us 
from obtaining a Lipschitz bound on the computation units. As we let a 
smooth r~ approach the sign function, its slope increases without limit, and 
thus the bound given in Corollary 3 degenerates. Nevertheless, using the 
techniques in Baum and Haussler (1989) it can be shown that results 
similar to Corollary 3 hold in this case, except that no Lipschitz bounds are 
required, and a bound on the sample size is 

0 & wlog~+log; 
( ( )) 

) 

where N is the total number of computation units in the net. Details are 
given in Theorem 13 in the Appendix. 

Despite the uncertainty about the need for the Lipschitz bounds, the 
result does give some indication of the maximum training sample size that 
will be needed for many popular network configurations. For example, 
if the squashing function is chosen as a(x) = l/( 1 + e-IIT) for some 
temperature T> 0 then it can be shown that the Lipschitz bound s for c 
is 1/4T. When the modifier p ~0, then r =O. Thus in this case the term 
d log(s(/? W,,,,, + r)) in the bound of Corollary 3 becomes d log@ W,,,/T). 
If the maximum weight /?, the temperature T, and the depth d are 
constants, along with c2 - ci, M, and cl, then the asymptotic bound of the 
theorem becomes 

0 -& Wlog 
( ( 

W 
-$+,og; ) 

>> 

which is similar to the bound obtained in Baum and Haussler (1989). 
It should also be noted that Corollary 3 does have the feature that no 

Lipschitz bounds are required on the computation units at depth one. Thus 
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if all computation units are at depth one, i.e., there are no hidden units, 
then no Lipschitz units are required at all. If the architecture has only one 
layer of hidden units at depth one and a single output unit at depth two, 
as is quite common, then Lipschitz bounds are required only on the output 
unit. This means that the weights and biases associated with the hidden 
units do not need to be bounded in order to get the rates of uniform con- 
vergence given by Corollary 3, as they would, for example, if the methods 
given in White (1990a) were used to obtain a result of this type. 

For an example of the above, consider networks that implement 
generalized radial basis I4 functions, as described in Poggio and Girosi 
(1989). These networks have one layer of hidden units at depth 1 and one 
output unit at depth 2. The structure of the hidden units is as described in 
the example above: the input transformers are identity functions, the 
modifier is Cr= I X: , and the squashing function is usually a smooth 
decreasing function. The output unit simply computes a weighted sum, so 
for this unit the modifier is the 0 function and the squashing function is the 
identity. Since this is the only unit at depth 2 and above, we require a 
Lipschitz bound only for this unit. If /I is a bound on the maximum weight 
coming into the output unit, and W,,, is the number of units in the hidden 
layer, then the term d log(s(fiW,,, + r)) in the above bound becomes 
log@ W,,,). Again, fixing 8, c2 - c, , M, and c, gives the same sample size 
bound, 

0 & 
( ( 

Wlog 
W 
-J$+logi , 

>> 

similar to that obtained in Baum and Haussler (1989). 
Since W appears to be the dominant factor in these bounds, apart from 

the accuracy parameters a and v, these bounds support the conventional 
wisdom that the training set size should be primarily related to the number 
of adjustable parameters in the net. They also support the notion that 
this relationship between appropriate training size and the number of 
parameters is nearly linear, at least in the worst case. Further work is 
needed to sharpen these relationships (see, e.g., the lower bounds obtained 
in Baum and Haussler, 1989)). 

I4 The computation units in the network of radial basis functions described here are quite 
primitive in that they have no adjustable multiplicative parameter included in their basic 
radial distance calculation. Such parameters would be needed to do any reasonable type of 
kernel-based density estimation (see, e.g., Duda and Hart (1973). These parameters can be 
simulated by inserting another layer of computation units between the inputs and the layer 

described here. Alternately, the analysis can also be done directly for adjustable kernel units. 
This cleaner approach is detailed in Pollard (1986). 
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8. CONCLUSION 

We have extended the PAC learning model to a more general decision 
theoretic framework so that it addresses many of the concerns raised by 
machine learning practitioners, and also introduced a number of new 
theoretical tools. Here we concentrate on applications of the extended 
model to the problem of obtaining upper bounds on sufficient training 
sample size. Further work will be required to obtain lower bounds on 
sample size needed, and to determine the computational complexity of 
finding decision rules with near minimal empirical risk. Some promising 
results along these lines are given in Kearns and Schapire (1990). However, 
even granting that such results can be obtained, the extended model still 
has a number of shortcomings in its present form. Some of these can be 
easily remedied, others may be more problematic. 

First, we define the model only for a fixed decision rule space Xc. The 
model should be extended to learning problems on a sequence of decision 
rule spaces { Xn : n > 1 }, where 2’ is a decision rule space on an n-attribute 
domain X, (e.g., [0, 11”). and to families of decision rule spaces of different 
“complexities” on a fixed domain (Kearns et al., 1987; Blumer et al., 1989; 
Haussler et al., 1991a), so that tradeoffs between decision rule complexity 
and empirical risk can be addressed. The former extension is easy, the latter 
more involved. One approach to the latter problem is via Vapnik’s (1989) 
principle of structural risk minimization (see also Devroye, 1988). Other 
approaches include the MDL (see, e.g., Barron and Cover, 1990), 
regularization (see, e.g., Poggio and Girosi, 1989), and more general 
Bayesian methods (see, e.g., Berger, 1985). 

Second, the constants in the upper bounds are still too large to give 
sample size estimates that are useful in practice. It may be difficult to 
improve them to the point where the results are directly usable in applied 
work. Thus even with matching asymptotic lower bounds, practitioners 
may still need to rely at least in part on empirically derived sample size 
bounds. It is possible that the Bayesian viewpoint may yield better tools for 
calculating sample complexities. Support for this belief is given in Clarke 
and Barron (1990), (manuscript), Haussler et al. (1991b), and Opper and 
Haussler (1991a). However, necessary sample size estimates for decision 
rule spaces as general as those studied from the minimax perspective 
using uniform convergence have not yet been tackled from the Bayesian 
perspective. 

Finally, many other issues would need to be considered in a complete 
treatment of the problem of overlitting, including distribution specific 
bounds on sample complexity (Theorem 2 is actually distribution specific, 
since the random covering numbers are distribution specific, yet we only 
apply it here in a distribution independent setting), decision rule spaces 
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with infinite pseudo and metric dimensions (these include various classes of 
“smooth” functions and their relatives; see Dudley, 1984, Chap. 7, and 
Quiroz, 1989), and non-i.i.d. sources of examples (see White, 1990a, and 
Nobel and Dembo, 1990). Despite these shortcomings, we feel that the 
theory we give here provides useful insights into the nature of the problem 
of overlitting in learning, and because of its generality will be a useful 
starting point for further research in this area. 

9. APPENDIX 

9.1. Metric Spaces, Covering Numbers, and Metric Dimension 

A pseudo metric on a set S is a function p from S x S into ‘%+ such 
that for all x, y, z E S, x = y =E- p(x, y) = 0, p(x, y) = p( y, X) (symmetry), 
and p(x, z) < p(x, y) + p( y, z) (triangle inequality). If in addition 
p(x, y) = 0 =-x = y, then p is a metric. (S, p) is a (pseudo) metric space. 
(S, p) is complete if every Cauchy sequence of points in S converges to a 
point in S; (S, p) is separable if it contains a countable dense subset, i.e., 
a countable subset A such that for every x E X and E > 0 there exists a E A 
with p(x, a) < E. If p(x, y) = 1 ox # y then p is called the discrete metric. 

The diameter of a set Tz S is sup{p(x, y): x, y E T}. If the diameter of 
T is finite then we say that T is bounded. For any E > 0, an E-cover for T 
is a finite set NE S (not necessarily contained in T) such that for all x E T 
there is a y E N with p(x, y) 6 E. If T has a (finite) s-cover for ail E > 0 then 
T is totally bounded. (Note that this implies that (T, p) is separable and 
bounded.) In this case the function M(E, T, p) denotes the size of the 
smallest s-cover for T (w.r.t. the space S and the (pseudo) metric p). We 
refer to JV(E, T, p) as a covering number. A set R E T is E-separated if for 
all distinct x, y E R, p(?c, y) > E. We denote by ~%‘(a, T, p) the size of the 
largest s-separated subset of T. We refer to A’(&, T, p) as a packing number. 
The third argument to ,N‘ and ,fl will be omitted when the metric p is clear 
from the context. 

The following inequalities are easily verified (see, e.g., Kolmogorov and 
Tihomirov, 1961): 

THEOREM 12. Zf T is a totally bounded subset of the (pseudo) metric 
space (S, p ) then for any E > 0, 

&(2&t T, P) < N(E, T, p) < .A’(&, T, p). 

Hence both these measures of boundedness, by covering number and by 
packing number, are equivalent to within a factor of 2 of E. Following 
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Kolmogorov and Tihomirov (1961) we define the upper metric dimension 
of a (pseudo) metric space (S, p) by 

dim(S) = liy:;p 
log J-(-G s, P) 

WV&) . 

The lower metric dimension, denoted by d&r, of a (pseudo) metric space 
(S, p), is defined similarly using liminf. When dim(S) = d&r(S), then this 
quantity is denoted dim(S), and referred to simply as the metric dimension 
of (S, p). This quantity has also been called the fractal dimension (Farmer, 
1982) and the capacity dimension (Farmer et al., 1983). A very lucid and 
intuitive treatment is given in Mandelbrot (1982). 

9.2. Permissible Classes of Functions 

In order to obtain the uniform convergence results given in Theorem 2, 
certain measurability assumptions have to be made concerning the class of 
functions F when this class is uncountable. These we have indicated by 
saying that F must be a permissible class (Pollard, 1984). Here we give a 
definition of permissible that is a special case of that given by Pollard. This 
definition will be suitable for our purposes; we refer the reader to Pollard 
(1984) and Dudley (1984) for a more general treatment. See Exercise 10, 
p. 39 of Pollard (1984) for an indication of the kind of problems that can 
come up with non-permissible classes. 

Throughout the paper we have assumed that F is a class of real-valued 
functions on a set Z, and that P is a measure defined on some a-algebra 
d of subsets of Z such that each function in F is measurable. We need 
further conditions on F when it is uncountable. Let us say that the class F 
is indexed by the set T if 

F= (f(., t): tE T}, 

where f is a real-valued function on Z x T and f( ., t) denotes the 
real-valued function on Z obtained from f by fixing the second parameter 
to t. We will say that the function f indexes F by T. 

We need some structure on T as well, If T is contained in a topological 
space T then we say that T is a Bore1 subspace if T is a Bore1 set with 
respect to the topology on T; i.e., if T is in the smallest a-algebra on T 
containing the open sets. The a-algebra SIB(T) of Bore1 sets on T is then 
the restriction to T of the o-algebra !% of Bore1 sets on F, i.e., 

33(~)= {an T: BEST}. 
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Finally, if A is any a-algebra on Z and %’ is any a-algebra on T 
then d x %? denotes the smallest r~ algebra on Zx T that contains 
{A x C: A E d, C E %‘I. We are now ready for our main definition. 

DEFINITION 11. We say that the class F is permissible if it can be indexed 
by a set T such that 

1. T is a Bore1 subspace of a compact metric space 7; and 

2. the function f: Z x T + !I? that indexes F by T is measurable with 
respect to the a-algebra r$ x g(T). 

Most uncountable classes of functions that come up in practice can be 
indexed by a finite number of real parameters (i.e., with T = ‘W for some 
n > 1) in such a way that condition (2) is satisfied. Condition (1) is satisfied 
as well in this case, since we can take T to be the one-point compactifica- 
tion of T, obtained by adding a point at infinity to T (see, e.g., Simmons, 
1963). 

Results given in Pollard (1984, Appendix C) imply that the sets used in 
Lemmas 12 and 13 are measurable when F is permissible. He also shows 
that the packing numbers &(a, Fis, dLI) are measurable functions of ZE Z” 
for any m B 1. Since Theorem 12 relates these closely to the covering 
numbers JV(E, F,,, dL1), this allows us to further formalize our usage of 
random covering numbers. A more formal treatment would either replace 
the covering numbers with the packing numbers in our upper bounds, or 
reword probabilistic bounds on the covering numbers to use outer measure 
arguments. 

9.3. Measuring the Accuracy of Empirical Estimates with the d, Metric 

In this section we give two bounds on the probability of large deviation 
of empirical estimates from true means, as measured by the d, metric. One 
is derived from Chebyshev’s inequality and the other from Bernstein’s 
inequality. The first bound is better for estimates obtained from small 
samples, the second for estimates obtained from larger samples. 

LEMMA 9. Let Z,, . . . . Z, be i.i.d. random variables with range 0 6 Zj d M 
andE(Z,)=p, IdiGn. Assume v>O andO<cr<l. Then 

<2e- 18a2Vfi/(3 + ab2M < ze -(9/8)&w/M < ze -c&/M 
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Pr00$ Let Yi= Zj--~, 1 6 i< n. Then 

since x1=, Zi > 0. 
To obtain the first bound, note that by Chebyshev’s inequality, 

where o2 = n Var( Y,). Since 0 < Zi 6 M, Var(Z,) = Var( Yi) < p(M-- p). 
Hence 

It is easily verified that the maximum value of this expression occurs at 
p = (vM)/(2v + M), and that this gives an upper bound of 

M’ 
4&w(M + v)’ 

To obtain the second bound, we apply Bernstein’s inequality (see, e.g., 
Pollard, 1984, p. 192), which states that 

for any zero mean i.i.d. random variables Y,, . . . . Y, bounded in absolute 
value by B. Substituting 4 = cm(v + ,u) and upper bounds B< A4 and 
Var( Yi) <p&f, this gives a bound of 

2e-dd(v +~1)*/2(n/df + (1/3)~m(v + o)) = 2e-3a2n(v + p)2/2~(zv + (3 t- x)p). 

Since (v+~)~/(c(v + (3 + ct)~) is minimized at p = (3 - a)/(3 + CI)V, the latter 
expression is bounded by substituting this value of p, This gives the first 
bound of part (2). The second bound follows from the fact that a < 1. u 
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9.4. Proof of Main Theorem on Uniform Convergence of 
Empirical Estimates 

In this section we prove Theorem 3 from Section 3. The proof is given in 
a series of lemmas. We first extend the metric d, to a pseudo metric on 
vectors in (3 + )Zm for m >, 1. We will do so in a somewhat unusual manner 
that will be useful in what follows. In fact, this extension can be defined for 
any metric, so we state it in its general form. 

DEFINITION 12. For each integer m b 1, let r,,,, denote the set of all per- 
mutations e of ( 1, . . . . 2m) such that for all i, 1 < i < m, either o(i) = m + i 
and c(m+i)=i, or a(i)=i and o(m+i)=m+ i. Thus the permutations 
in r,,,, swap selected indices in the first half of the sequence { 1, . . . . 2m} 
with corresponding indices in the second half. For any x’= (x,, ..,, x2,,,) E 
(%+)2m and aorZmr let ~~(2, a) = 
(l/m) ZZm+l x,(~). 

~~(2, a) = (l/m) Cy= i xPCit and 
For any metric d on % + and v?, Jo (%+ )2m, let 

L?(,?, 3)=max{d(pl(’ x3 a), ~~(2 a.))+4p2(% a), P~(.K a)):aEr2mJ. 

It is easily verified that d’ is a pseudo-metric on (9I + )*“‘. Symmetry is 
obvious, and the triangle inequality follows easily from the triangle 
inequality for d on !R + : 

=max{dh(K a), ~~(9, a))+4p2G2 01, ~~(5 a)): aEr2,,,) 
+max{4~l(.K 01, P~(Z a))+4~2(Yy a), p2(Z a)): aErZrn) 

2 max{4~l(l a), P~(Z 0)) + 4p2(Z a), ~~(9, a)) 

+ d(p,G a), P~(Z 0)) + 4p2(.t a), P~(% 0)): aE r2,} 

3 max{ d(~lG, a), p,(t 0)) + d(p2(Z 01, P~(L a)): a E J’,,,,} 

= &?, 2). 

We note the following additional property of this extension. 

LEMMA 10. For afl 2, ~JE (%+)2m and aErZm, d(p,(x’, a), p2(.?, a))< 
dh(A 01, ,4(5 0)) +&C 3. 

Proof: We have 

by the triangle inequality on d. The last two terms of this sum combined 
are at most J(.?, 9) by definition. 1 

643/100/l-IO 
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We now restrict ourselves to the case that the metric d is the metric d, 
for some v > 0. The following lemma will play a key role in establishing our 
basic exponential inequality. 

LEMMA 11. Let x’= (x,, . . . . x2,) be a sequence of reals such that 
0 < xi < A4, 1 < i < 2m. Assume v > 0 and 0 < c1< 1. Then if a permutation 

aEr2m is chosen uniformly at random, 

Pr(d,(pI(x’, a), ~~(2, a)) > ~1) < 2e-2a2’“‘M. 

Proof: For each i, 1 < i < m, let Yi be an independent random variable 
such that Yi = xi - x, + i with probability i and Yi= x,+~- xi with 
probability f . Note that for any a E r2,,,, 

d,(~l(% ah P@, a)) = 
I(W) Cy= I xc(i)-(llm) CEm+ i xdijl 

V + (l/m) Zf’ll I xo(i) 

= ICY= I Cxo(i) - xn(m + i))l 

V??l-l-~~~~ Xi ’ 

Hence 

=Pr 
(I 

f (x,(i)-x 
i=l 

~i,+i,,l>a(Vm+,~lXi)) 

because each swap in a randomly chosen a E r2,,, is independent. Since 
E( Y,) = 0 and - IXi - x,, iI < Yi < Ixi - x, + J, we can apply Hoeffding’s 
inequality (see, e.g., Pollard, 1984) to bound the latter probability by 

2e- 
2m a*c,rn+x ,=,- r,)*/2~~,I(X,--x,+,)* 

Let fi=Cf”, xi. Since O<XiGM* 

igl tximxm+i )*< f Mlxi-xm+jl <PM. 
i=l 

Hence we have 

2e-1*(vm+~~,X,)*/2~~=,(x,-xxm+,)* < 2e-a2wn + 8)2/V3.+f = 2e-‘“2/2M)“‘“+8)218). 
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The expression in parentheses is minimized, and therefore the whole 
expression is maximized, by setting fi = vm, giving a value of 4vm. Hence 

Pr(d,(p,(?, G), ~~(2, 0)) > a) d 2e-2”2”“‘M. 1 

For our next lemma we need some notation to refer to the separate 
empirical estimates based on the first and second halves of an even length 
sample. 

DEFINITION 13. For all mZ 1 and ZEZ~“‘, we let k(f)= 
(l/m) X”=, f(zJ and E%(f) = (l/m) Zflr,, 1 f(zi). 

LEMMA 12. Let F be a permissible set of functions on Z with 
O<f(z)<M for all fEF and ZEZ. Assume v>O, O<u<l, and 
m 3 2M/(a2v). Then 

Pr{zeZ”:3fEFwithd,(j?,(f),E(f))>cr} 

< 2Pr{ZE Z2’? 3f~ F with d&(f), Y@(f)) > a/2}. 

Proof: If Z and F are uncountable, the assumption of permissibility 
guarantees that these probabilities are well-defined (see Section 9.2 and 
Pollard (1984)). From Chebyshev’s inequality (see Lemma 9, part (1) in 
Section 9.3), for each individual f E F, 

Pr{?E Z”: d,(fi,(f ), E(f)) > cr/2} < M/(u2vm). 

Since m > 2M/(cr2v), this probability is at most i. Now consider any 
f~ F and sample Z’ cZrn such that d&(f), E(f)) > tl. If we draw an 
independent random sample 2” E Z”, then with probability at least i, 
d,(l?lr.,(f ), E(f )) < a/2. Whenever this happens we have d,@,,(f ), l?.,..(f )) 
> a/2 by the triangle inequality for d,. Thus 

Pr(ZE Z2”: 3f E F with d&f ), &f )) > u/2) 

> Pr(Z’z”’ E Z2’? 3f E F with d,@,,(f ), E(f)) > c1 

and d&Xf), E(f )) <a/2} 

> i Pr{Z’E Z”: 3f E F with d,(@Jf ), E(f)) > a}. 

Again, when Z and F are uncountable, permissibility guarantees that the 
implied use of Fubini’s theorem in obtaining the above inequalities is 
justified. l 

We are now in a position to prove the following version of our theorem, 
using the extended metric & in place of the L’ metric to measure covering 
numbers. 
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LEMMA 13. Let F be a permissible set of functions on Z with 
O<f(z)<MforalIfEFandz~Z. Assumev>0,O<a<1,andm31. Let 

p(cc,v,m)=Pr{(~~Z~:3f~F with d,,(i?,(f),E(f))>a). 

Then 

p(cr, v, m) < 2E(min(2M(a/4, F,?, 8) e-“2”m’8M, l)), 

and if in addition F,, is finite for all ?E Z2” then 

p(a, v, m)d2E(min(21F,IJe~“Z”“‘2M, l)), 

where the expectations are over Z drawn randomly from Z2”. 

Proof: First note that both bounds are trivial if m < 2M/(g2v), SO we 
may assume m 2 2M/(a*v). Hence by Lemma 12, 

p(cr, v, m) < 2Pr{z’e Z2Y 3f E F with d,(E>( f ), I?;( f )) > 42). 

Thus it suffices to obtain bounds for the latter quantity. 
We begin with the second bound, for the case when F,? is always 

finite. For any sample z’= (zr, . . . . zZm) E Z2m and cr E r2,,,, let a(,?) = 
(z O(l)? “.Y zOCZm)). For any fixed function f E F and fixed ,?E Z2”‘, if we select 
a permutation (T E rZ,,, uniformly at random, 

Pr(d,(%,s,(f ), @,,,(f )) > a/2) < 2e-“2vm’2M (7) 

by Lemma 11. Hence for any fixed ZE Z2m, if we select a permutation 
~.Er*rn uniformly at random, 

Pr(3f EF with d,@&,(f), e~,,,(f))>or/2)~min(2)F,ZJe-r2Ymi2M, 1). (8) 

Thus if we draw z’ at random from 2”” and independently select a 
permutation g E Tzm uniformly at random, 

Pr(3f E F with d,(fi&,(f), E&,(f )) > a/2) < E(min(21F,,I e-‘2v”‘i2M, 1)). 

However, since each of the 2m observations in Z is independent, each of the 
samples o(Z) for g E Tz,,, is equally likely. Hence 

Pr(3f E F with d,(&(f ), @&(f )) > a/2), 

where both z’ and (r are chosen at random, is .the same as 

Pr(3f E F with d,(@‘,(f ), Ea(f )) > a/2), 

where only the sample z’ is chosen at random. The second bound follows. 
The proof of the first bound is similar, except for steps 7 and 8. From 
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Lemma 10, using the extension & of the metric d, to even-length sequences 
of reals given in Definition 12 above, iff, f* E F are such that 

BUf(z,)v . . . . f(zzm)), (f*(z,), ...> I-*@,,))) G u/4, 

then for any r~ E rZ,,, such that 

we must have 

d,&Jf*), %I,,,(f*)) > 44. 

Thus if N is an a/4-cover for F,, with respect to the metric &, then 
whenever there exists f E F with 

4(&(f), fi&,(f)) > 42, 

there exists f * EN with 

d,@bJf*), &(f*)) >W 

For fixed f * and random cr, the probability of the latter event is at most 
2e- a2vm’8M by Lemma 11. Hence for any fixed .?E Z2*, if we select a 
permutation 0 E r,, uniformly at random, 

PrOfeF with dy(&,(f), @,,,(f))> 6!) 

d min(2M(a/4, F,?, &) e-‘zvm/8M, 1)). 

The remainder of the proof is as above. 1 

We need only one more lemma to complete our proof, one that can be 
used to relate the & covering numbers to the d,, covering numbers. 

LEMMA 14. For any m>l, 2, ~E(!R+)~~, and v>O, &(Z, y’)g 
(2/v) d,l(x’, 3. 

Proof: For any a E T2,,, 

d,(~~(-C a), PI(R a)) + 4b2G a), p2(Y, a)) 

ICY= I txc(i) - Yo(i))l 

The result follows. 1 

The theorem follows easily from the last two lemmas. i 
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9.5. BOUNDS ON SAMPLE SIZE FOR LEARNING IN FEEDFORWARD NETS 
WITH SHARP THRESHOLDS 

In this section we give the bounds for uniform convergence of empirical 
estimates in neural networks with sharp threshold functions claimed in 
Section 7. 

THEOREM 13. Let d be a feedforward architecture as defined in 
Section 7 with n 3 1 inputs, one output, N 2 2 computation units, and a total 
of W weights and biases. Let X = !I?‘, Y = A = { 0, 1 >, and I be the discrete 
loss function. Assume that the squashing function for each computation unit 
has the form sign 0 a, where o is non-decreasing or non-increasing. Different 
o’s can be used for different units. Let Z be all functions from X into A 
representable on d by varying the weights and biases. Let v > 0, 0 <a -C 1 
and m > 1. Suppose that Z is generated by m independent random draws from 
a probability measure P on Z = Xx Y. Then 

Pr(3hE2: dv(ih,,(Zt), rh,,(P))>~)~4(2eNm/W)We-a2”“‘2. 

This probability is at most 6 for a sample size m that is 

0 -& Wlog~+log~ 
( ( 1) 

. 

Proof Each computation unit in the network with k weights is 
associated with a class of (0, 1 }-valued functions of the form 

f(Z) = sign 
( 

d (41(x’), . . . . bk(.?)) + 8 + i Wjdj(-?) , 
j= 1 > 

where 8, w,, . . . . wk are adjustable real-valued parameters and q5i, . . . . #k, p 
and B are fixed functions, the latter monotone. By Theorems 4 and 5 this 
class of functions has pseudo dimension at most k + 1. Since the pseudo 
dimension is the same as the Vapnik-Chervonenkis dimension for classes of 
indicator functions, this implies that the class has Vapnik-Chervonenkis 
dimension at most k + 1. Now let d be the sum of all the Vapnik- 
Chervonenkis dimensions of all the classes of functions associated with the 
computation units of the architecture &. It follows that d < W, the total 
number of weights and biases in the network. 

For each hE# let 1, be the loss function associated with h for the 
discrete loss 1, i.e., 1,(x, y) = 1 if y # h(x), 1,(x, y) = 0 if y= h(x). Let 
F=l,= {l,:hEZ}. Let z’=((x i, yi), . . . . (x~, y,)) be any fixed sample 
and x’= (xi, . . . . x,). It is easily verified that lF,J = lqzl. It is shown in 
Baum and Haussler (1989, Theorem 1 ), (and is also implied directly from 
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results in Cover (1968)) that for any class X as above, IJQ < (Nem/d)d 
for all x’= (x1, . . . . x,), where d and N are as above. This implies that 

lFlil < (Nem/d)d< (Nem/W)w 

for all samples z’ of length m. Since each 1, E F is a random variable that 
is bounded between 0 and 1, Theorem 3 (second part) shows that 

Pr(3h E F: d,(fis(h), E(h)) > ~1) 6 4(2eNm/W)W e~a2um’2. 

This gives the first bound. 
For the second bound, it can be shown that for sample size 

m=& ZWln~+hr~ 
( Ci2V > 

we have 

4(2eNm/ W) w  e-~2vm/2 < 6. 

To see this, first note that by rearranging, we get 

a2vm/2 2 W ln(2eNm/ W) + ln(4/6). 

Thus it suffices to show that 

a2vmf4 Z W ln(2eNm/ W) and a2vm/4 2 ln(4/6). 

The latter inequality is assured by the last term in the formula for m. For 
the former inequality, let us take m equal to the first term only, i.e., 

m=Wln16N 
a2v a2v ’ 

Substituting this into the former inequality and simplifying, we get 

This further simplifies to 

!!?!!~eIn!.C 
a2v a2v ’ 

which holds, since x > e In x for any x. Finally, since this inequality holds 
for the given m, it is easy to see that it will also hold for larger m. 1 
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